Annals of Combinatorics

, Volume 17, Issue 1, pp 205–228 | Cite as

Affine and Projective Tree Metric Theorems

Article

Abstract

The tree metric theorem provides a combinatorial four-point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A related weaker four point condition characterizes dissimilarity maps derived from circular split systems known as Kalmanson metrics. The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many tree reconstruction algorithms, whereas Kalmanson metrics were first considered by computer scientists, and are notable in that they are a non-trivial class of metrics for which the traveling salesman problem is tractable. We present a unifying framework for these theorems based on combinatorial structures that are used for graph planarity testing. These are (projective) PC-trees, and their affine analogs, PQ-trees. In the projective case, we generalize a number of concepts from clustering theory, including hierarchies, pyramids, ultrametrics, and Robinsonian matrices, and the theorems that relate them. As with tree metrics and ultrametrics, the link between PC-trees and PQ-trees is established via the Gromov product.

Keywords

hierarchy Gromov product Kalmanson metric Robinsonian metric PC-tree PQ-tree phylogenetics pyramid ultrametric 

Mathematics Subject Classification

05C05 92B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand P., Janowitz M.F.: Pyramids and weak hierarchies in the ordinal model for clustering. Discrete Appl. Math. 122(1-3), 55–81 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Booth K., Lueker G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bryant D., Moulton V.: Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21(2), 255–265 (2004)CrossRefGoogle Scholar
  4. 4.
    Bryant, D., Moulton, V., Spillner, A.: Consistency of the neighbor-net algorithm. Algorithms Mol. Bio. 2, #8 (2007)Google Scholar
  5. 5.
    Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tǎutu, P. (eds.)Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)Google Scholar
  6. 6.
    Chepoi V., Fichet B.: A note on circular decomposable metrics. Geom. Dedicata 69(3), 237–240 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Christopher, G., Farach, M., Trick, M.: The structure of circular decomposable metrics. In: Diaz, J., Serna, M. (eds.) Algorithms—ESA’96, pp. 486–500. Springer, Berlin (1996)Google Scholar
  8. 8.
    Dewey, C., Pachter, L.: Evolution at the nucleotide level: the problem of multiple whole genome alignment. Hum. Mol. Genet. 15(suppl 1), R51–R56 (2006)Google Scholar
  9. 9.
    Diday, E.: Orders and overlapping clusters by pyramids. In: De Leeuw, J., Heiser, W.J., Meulman, J.J., Critchley, F. (eds.) Multidimensional Data Analysis, pp. 201–234. DSWO Press, Leiden (1986)Google Scholar
  10. 10.
    Dress, A.: Towards a theory of holistic clustering. In: Mirkin, B. et al. (eds.)Mathematical Hierarchies and Biology, pp. 271-289. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 37. American Mathematical Society, Providence, RI (1997)Google Scholar
  11. 11.
    Dress A, Huber K.T., Moulton V.: Some uses of the Farris transform in mathematics and phylogenetics—a review. Ann. Combin. 11(1), 1–37 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. In: Hammer, P.L. (eds.) Studies in Integer Programming, pp. 185–204. North-Holland, Amsterdam (1977)Google Scholar
  13. 13.
    Eslahchi, C., Habibi, M., Hassanzadeh, R., Mottaghi, E.: MC-Net: a method for the construction of phylogenetic networks based on the Monte-Carlo method. BMC Evol. Biol. 10, #254 (2010)Google Scholar
  14. 14.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 448–455. ACM Press, New York (2003)Google Scholar
  15. 15.
    Farris J.S.: Estimating phylogenetic trees from distance matrices. Amer. Naturalist 106(951), 645–668 (1972)CrossRefGoogle Scholar
  16. 16.
    Gusfield D.: Efficient algorithms for inferring evolutionary history. Networks 21(1), 19–28 (1991)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hsu, W.-L.: PC-trees vs. PQ-trees. In: Wang, J. (ed.) Computing and Combinatorics, pp. 207–217. Springer, Berlin (2001)Google Scholar
  18. 18.
    Hsu W.-L., McConnell R.M.: PC trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Huson D., Bryant D.: Application of phylogenetic networks in evolutionary studies.Mol. Biol. Evol. 23(2), 254–267 (2006)Google Scholar
  20. 20.
    Jardine C.J., Jardine N., Sibson R.: The structure and construction of taxonomic hierarchies. Math. Biosci. 1(2), 173–179 (1967)MATHCrossRefGoogle Scholar
  21. 21.
    Kalmanson K.: Edgeconvex circuits and the traveling salesman problem. Canad. J. Math. 27(5), 1000–1010 (1975)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Levy D., Pachter L.: The neighbor-net algorithm. Adv. Appl. Math. 47(2), 240–258 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005)Google Scholar
  24. 24.
    Robinson W.S.: A method for chronologically ordering archaeological deposits. Amer. Antiquity 16, 293–301 (1951)CrossRefGoogle Scholar
  25. 25.
    Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  26. 26.
    Semple C., Steel M.: Cyclic permutations and evolutionary trees. Adv. Appl. Math. 32(4), 669–680 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Shih W.-K., Hsu W.-L.: A new planarity test. Theoret. Comput. Sci. 223(1-2), 179–191 (1999)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Terhorst, J.: The Kalmanson complex. arXiv.org:abs/1102.3177 (2011)Google Scholar
  29. 29.
    White W.T. et al.: Treeness triangles: visualizing the loss of phylogenetic signal. Mol. Biol. Evol. 24(9), 2029–2039 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsCourant Institute of Mathematical SciencesNew YorkUSA
  3. 3.Departments of Mathematics and Molecular & Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations