Skip to main content
Log in

A Congruence Connecting Latin Rectangles and Partial Orthomorphisms

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

A partial orthomorphism of \({\mathbb{Z}_{n}}\) is an injective map \({\sigma : S \rightarrow \mathbb{Z}_{n}}\) such that \({S \subseteq \mathbb{Z}_{n}}\) and σ(i)–i ≢ σ(j)− j (mod n) for distinct \({i, j \in S}\). We say σ has deficit d if \({|S| = n - d}\). Let ω(n, d) be the number of partial orthomorphisms of \({\mathbb{Z}_{n}}\) of deficit d. Let χ(n, d) be the number of partial orthomorphisms σ of \({\mathbb{Z}_n}\) of deficit d such that σ(i) ∉ {0, i} for all \({i \in S}\). Then ω(n, d) = χ(n, d)n 2/d 2 when \({1\,\leqslant\,d < n}\) . Let R k, n be the number of reduced k × n Latin rectangles. We show that

$$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$

when p is a prime and \({n\,\geqslant\,k\,\geqslant\,p + 1}\) . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ω(n, d) exactly. We show that for each a there exists μ a such that, on each congruence class modulo μ a , ω(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for \({1\,\leqslant\,a\,\leqslant 6}\) , and find an asymptotic formula for ω(n, n-a) as n, for arbitrary fixed a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn S.R., Neumann P.M., Venkataraman G.: Enumeration of Finite Groups. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Browning, J., Stones, D.S., Wanless, I.M.: Bounds on the number of autotopisms and subsquares of a Latin square. Submitted

  3. Bryant D., Buchanan M., Wanless I.M.: The spectrum for quasigroups with cyclic automorphisms and additional symmetries. Discrete Math. 309(4), 821–833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butson A.T., Stewart B.M.: Systems of linear congruences. Canad. J. Math. 7, 358–368 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavenagh N.J., Wanless I.M.: On the number of transversals in Cayley tables of cyclic groups. Discrete Appl. Math. 158(2), 136–146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clark D., Lewis J.T.: Transversals of cyclic Latin squares. Congr. Numer. 128, 113–120 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Euler L.: Recherches sur une nouvelle espéce de quarrés magiques. Verh. Zeeuwsch. Gennot. Weten. Vliss. 9, 85–239 (1782)

    Google Scholar 

  8. Evans A.B.: Orthomorphism Graphs of Groups. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  9. Kuznetsov N.Y.: Applying fast simulation to find the number of good permutations. Cybernet. Systems Anal. 43(6), 830–837 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuznetsov N.Y.: Estimating the number of good permutations by a modified fast simulation method. Cybernet. Systems Anal. 44(4), 547–554 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Kuznetsov N.Y.: Estimating the number of Latin rectangles by the fast simulation method. Cybernet. Systems Anal. 45(1), 69–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levitskaya A.A.: A combinatorial problem in the class of permutations over the residue ring Z n modulo odd n. Probl. Upravl. Inform. (In Russian) 1996(5), 99–108 (1996)

    MathSciNet  Google Scholar 

  13. McKay B.D., McLeod J.C., Wanless I.M.: The number of transversals in a Latin square. Des. Codes Cryptogr. 40(3), 269–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups, and loops. J. Combin. Des. 15(2), 98–119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. McKay, B.D., Rogoyski, E.: Latin squares of order 10. Electron. J. Combin. 2, #N3 (1995)

  16. McKay B.D., Wanless I.M.: On the number of Latin squares. Ann. Combin. 9(3), 335–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Novakovich D.: Calculation of the number of complete mappings for permutations. Cybernet. Systems Anal. 36(2), 244–247 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences/

  19. Smetaniuk B.: A new construction of Latin squares. II. The number of Latin squares is strictly increasing. Ars Combin. 14, 131–145 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Stones, D.S.: The many formulae for the number of Latin rectangles. Electron. J. Combin. 17, #A1 (2010)

  21. Stones, D.S.: On the Number of Latin Rectangles. PhD thesis, Monash University (2010) http://arrow.monash.edu.au/hdl/1959.1/167114

  22. Stones D.S.: The parity of the number of quasigroups. Discrete Math. 310(21), 3033–3039 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stones D.S., Wanless I.M.: Compound orthomorphisms of the cyclic group. Finite Fields Appl. 16(4), 277–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stones D.S., Wanless I.M.: Divisors of the number of Latin rectangles. J. Combin. Theory Ser. A 117(2), 204–215 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stones, D.S.,Wanless, I.M.: How not to prove Alon-Tarsi conjecture. Nagoya Math. J. (to appear)

  26. Wanless I.M.: Diagonally cyclic Latin squares. European J. Combin. 25(3), 393–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. Stones.

Additional information

Supported by ARC grant DP0662946 and DP1093320.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stones, D.S., Wanless, I.M. A Congruence Connecting Latin Rectangles and Partial Orthomorphisms. Ann. Comb. 16, 349–365 (2012). https://doi.org/10.1007/s00026-012-0137-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-012-0137-6

Mathematics Subject Classification

Keywords

Navigation