Skip to main content
Log in

The Frobenius Complex

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers \({\mathbb Z}\) , that is, for a sub-semigroup Λ of the non-negative integers (\({\mathbb N}\) , +), we define the order by nΛ m if \({{m-n \in \Lambda}}\). When Λ is generated by two relatively prime integers a and b, we show that the order complex of an interval in the Frobenius poset is either contractible or homotopy equivalent to a sphere. We also show that when Λ is generated by the integers {a, a + d, a + 2d, . . . , a + (a−1)d}, the order complex is homotopy equivalent to a wedge of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok A.: A Course in Convexity. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  2. Beck M., Robins S.: Computing the Continuous Discretely. Springer, New York (2007)

    MATH  Google Scholar 

  3. Billera L.J., Hetyei G.: Decompositions of partially ordered sets. Order 17(2), 141–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billera L.J., Myers A.N.: Shellability of interval orders. Order 15(2), 113–117 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björner A., Welker V.: Segre and Rees products of posets, with ring-theoretic applications. J. Pure Appl. Algebra 198(1-3), 43–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins K.L.: Planar lattices are lexicographically shellable. Order 8(4), 375–381 (1992)

    Article  MATH  Google Scholar 

  7. Ehrenborg R., Hetyei G.: The topology of the independence complex. European J. Combin. 27(6), 906–923 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forman R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Combin. 48, Art. B48c (2002)

  10. Hersh, P., Welker, V.: Gröbner basis degree bounds on \({{\rm Tor}^{k [ \Lambda ]}_{\bullet}(k, k){_\bullet}}\) and discrete Morse theory for posets. In: Barvinok, A. et al (eds.) Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization. Contemp. Math. Vol. 374, pp. 101–138. Amer. Math. Soc., Providence, RI (2005)

  11. Kozlov D.N.: Complexes of directed trees. J. Combin. Theory Ser. A 88(1), 112–122 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kozlov D.N.: Combinatorial Algebraic Topology. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  13. Kozlov D.N.: Discrete Morse theory and Hopf bundles. Pacific J. Math. 249(2), 371–376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laudal O.A., Sletsjøe A.: Betti numbers of monoid algebras. Applications to 2-dimensional torus embeddings. Math. Scand. 56, 145–162 (1985)

    MATH  Google Scholar 

  15. Ong, D., Ponomarenko, V.: The Frobenius number of geometric sequences. Integers 8, #A33 (2008)

  16. Peeva I., Reiner V., Sturmfels B.: How to shell a monoid. Math. Ann. 310(2), 379–393 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Roberts J.B.: Note on linear forms. Proc. Amer. Math Soc. 7, 465–469 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stamate, D.I.: Computational algebra and combinatorics in commutative algebra. PhD Thesis, University of Bucharest (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, E., Ehrenborg, R. The Frobenius Complex. Ann. Comb. 16, 215–232 (2012). https://doi.org/10.1007/s00026-012-0127-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-012-0127-8

Mathematics Subject Classification

Keywords

Navigation