Skip to main content
Log in

Words and Polynomial Invariants of Finite Groups in Non-Commutative Variables

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Let V be a complex vector space with basis {x 1, x 2, . . . , x n } and G be a finite subgroup of GL(V). The tensor algebra T(V) over the complex is isomorphic to the polynomials in the non-commutative variables x 1, x 2, . . . , x n with complex coefficients. We want to give a combinatorial interpretation for the decomposition of T(V) into simple G-modules. In particular, we want to study the graded space of invariants in T(V) with respect to the action of G. We give a general method for decomposing the space T(V) into simple modules in terms of words in a Cayley graph of the group G. To apply the method to a particular group, we require a homomorphism from a subalgebra of the group algebra into the character algebra. In the case of G as the symmetric group, we give an example of this homomorphism from the descent algebra. When G is the dihedral group, we have a realization of the character algebra as a subalgebra of the group algebra. In those two cases, we have an interpretation for the graded dimensions and the number of free generators of the algebras of invariants in terms of those words.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergeron N., Reutenauer C., Rosas M., Zabrocki M.: Invariants and coinvariants of the symmetric groups in noncommuting variables. Canad. J. Math. 60(2), 266–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chauve, C., Goupil, A.: Combinatorial operators for Kronecker powers of representations S n . Sém. Lothar. Combin. 54, Art. B54j (2006)

  3. Chevalley C.: Invariants of finite groups generated by reflections. Amer. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Comtet L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Co., Dordrecht (1974)

    MATH  Google Scholar 

  5. Dicks, W., Formanek, E.: Poincaré series and a problem of S. Montgomery. Linear and Multilinear Algebra 12(1), 21–30 (1982/83)

  6. Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Kharchenko V.K.: Algebras of invariants of free algebras. Algebra and Logic 17(4), 478–487 (1978)

    Article  MathSciNet  Google Scholar 

  8. Lane, D.R.: Free Algebras of Rank Two and Their Automorphisms. Ph.D thesis, Bedford College, London (1976)

  9. MacMahon, P.A.: Combinatory Analysis. Vol. I, II. Cambridge University Press, Cambridge (1915/1916)

  10. Molien, T.: Uber die Invarianten der linearen Substitutions gruppe. Sitz. Konig. Preuss. Akad. Wiss. 1152–1156 (1897)

  11. Poirier S., Reutenauer C.: Algèbres de Hopf de tableaux. Ann. Sci. Math. Québec 19(1), 79–90 (1995)

    MathSciNet  MATH  Google Scholar 

  12. de Robinson G.B.: On the representations of the symmetric group. Amer. J. Math. 60(3), 745–760 (1938)

    Article  MathSciNet  Google Scholar 

  13. Rosas M.H., Sagan B.E.: Symmetric functions in noncommuting variables. Trans. Amer. Math. Soc. 358(1), 215–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schensted C.: Longest increasing and decreasing subsequences. Canad. J.Math. 13, 179–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shephard G.C., Todd J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Solomon L.: A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(2), 255–264 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stanley R.P.: Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.) 1(3), 475–511 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wolf M.C.: Symmetric functions of non-commutative elements. Duke Math. J. 2(4), 626–637 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouk Bergeron-Brlek.

Additional information

This research has been supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron-Brlek, A., Hohlweg, C. & Zabrocki, M. Words and Polynomial Invariants of Finite Groups in Non-Commutative Variables. Ann. Comb. 16, 1–36 (2012). https://doi.org/10.1007/s00026-011-0119-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0119-0

Mathematics Subject Classification

Keywords

Navigation