Skip to main content
Log in

Bitableaux and Zero Sets of Dual Canonical Basis Elements

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We state new results concerning the zero sets of polynomials belonging to the dual canonical basis of \({\mathbb{C}[x_1, 1, . . . , x_n, n]}\) . As an application, we show that this basis is related by a unitriangular transition matrix to the simpler bitableau basis popularized by Désarménien-Kung-Rota. It follows that spaces spanned by certain subsets of the dual canonical basis can be characterized in terms of products of matrix minors, or in terms of their common zero sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen E.E.: New bases for the decomposition of the graded left regular representation of the reflection groups of type Bn and Dn. J. Algebra 173(1), 122–143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbasch D., Vogan D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra 80(2), 350–382 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck D., Remmel J., Whitehead T.: The combinatorics of transition matrices between the bases of the symmetric functions and the bn analogues. Discrete Math 153(1-3), 3–27 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billera, L.J., Brenti, F.: Quasisymmetric functions and Kazhdan-Lusztig polynomials. arXiv:math.CO/0710.3965v1 (2007)

  5. Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, 182. Birkhäuser Boston Inc., Boston, MA (2000)

    Book  Google Scholar 

  6. Björner A., Brenti F.: Combinatorics of Coxeter Groups. Graduate Texts inMathematics. 231. Springer, New York (2005)

    Google Scholar 

  7. Boocher A., Froehle B.: On generators of bounded ratios of minors for totally positive matrices. Linear Algebra Appl 428(7), 1664–1684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clausen M.: Dominance orders, Capelli operators, and straightening of bideterminants. European J. Combin 5(3), 207–222 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Clausen M.: Multivariate polynomials, standard tableaux, and representations of symmetric groups. J. Symbolic Comput 11(5-6), 483–522 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Concini C., Eisenbud D., Procesi C.: Young diagrams and determinantal varieties. Invent. Math 56(2), 129–165 (1980)

    Article  MathSciNet  Google Scholar 

  11. Désarménien J.: An algorithm for the Rota straightening formula. Discrete Math 30(1), 51–68 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Désarménien J., Kung J.P.S., Rota G.-C.: Invariant theory, Young bitableaux, and combinatorics. Adv. Math 27(1), 63–92 (1978)

    Article  MATH  Google Scholar 

  13. Dipper, R., James, G.: Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. (3) 52(1), 20–52, (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dobrovolska G., Pylyavskyy P.: On products of sln characters and support containment. J. Algebra 316(2), 706–714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doubilet P., Rota G.-C., Stein J.: On the foundations of combinatorial theory. IX. Combinatorial methods in invariant theory. Studies in Appl. Math 53, 185–216 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Drake, B., Gerrish, S., Skandera, M.: Monomial nonnegativity and the Bruhat order. Electron. J. Combin. 11(2), #R18 (2004/06)

    Google Scholar 

  17. Du J.: Canonical bases for irreducible representations of quantum GLn. Bull. London Math. Soc 24(4), 325–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du J.: Global IC bases for quantum linear groups. J. Pure Appl. Algebra 114(1), 25–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ehresmann, C.: Sur la topologie de certains espaces homog‘enes. Ann. of Math. (2) 35(2), 396–443, (1934)

    Article  MathSciNet  Google Scholar 

  20. Fomin S., Fulton W., Li C.K., Poon Y.: Eigenvalues, singular values, and Littlewood-Richardson coefficients. Amer. J. Math 127(1), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fulton W.: Young Tableaux London Mathematical Society Student Texts 35. Cambridge University Press, New York (1997)

    Google Scholar 

  22. Garsia A.M., McLarnan T.J.: Relations between Young’s natural and the Kazhdan-Lusztig representations of Sn. Adv. Math 69(1), 32–92 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geck M.: Relative Kazhdan-Lusztig cells. Represent. Theory 10, 481–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greene C.: An extension of Schensted’s theorem. Adv. Math 14, 104–109 (1974)

    Article  MathSciNet  Google Scholar 

  25. Grojnowski, I., Lusztig, G.: On bases of irreducible representations of quantum GLn. In: Kazhdan-Lusztig Theory and Related Topics (Chicago, IL, 1989), pp. 167–174. Amer. Math. Soc., Providence, RI (1992)

  26. Haiman M.: Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc 6(3), 569–595 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  28. Kashiwara M.: On crystal bases of the Q-analog of universal enveloping algebras. Duke Math. J 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kazhdan D., Lusztig G.: Representations of Coxeter groups and Hecke algebras. Invent. Math 53(2), 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Knuth, D.E.: The Art of Computer Programming, Vol. 3. Addison-Wesley Publishing Company, Reading, MA (1973)

    Google Scholar 

  31. Lakshmibai V., Sandhya B.: Criterion for smoothness of Schubert varieties in SL(n)/B. Proc. Indian Acad. Sci. Math. Sci 100(1), 45–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lam T., Postnikov A., Pylyavskyy P.: Schur positivity and Schur log-concavity. Amer. J. Math 129(6), 1611–1622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Leclerc, B., Thibon, J.-Y.: The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0. Electron. J. Combin. 3(2), #R11 (1996)

  34. Leclerc B., Toffin P.: A simple algorithm for computing the global crystal basis of an irreducible Uq(sln)-module. Internat. J. Algebra Comput 10(2), 191–208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Littlewood D.E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York (1940)

    Google Scholar 

  36. Lusztig G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, 110. Birkhäuser Boston Inc., Boston, MA (1993)

    Google Scholar 

  38. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry, pp. 531–568. Birkhäuser, Boston (1994)

  39. Lusztig, G.: Personal communication. (2008)

  40. Mathas, A.: Iwahori-Hecke algebras and Schur algebras of the symmetric group. University Lecture Series, 15. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  41. McDonough T.P., Pallikaros C.A.: On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras. J. Pure Appl. Algebra 203(1-3), 133–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mead D.G.: Determinantal ideals, identities, and the Wronskian. Pacific J. Math 42, 165–175 (1972)

    MathSciNet  MATH  Google Scholar 

  43. Melnikov, A.: Geometric Interpretation of Robinson-Schensted Procedure and Related Orders on Young Tableaux. Ph.D. thesis, Weizmann Institute, Rehovot, Israel (1992)

  44. Melnikov A.: On orbital variety closures in sln. III. Geometric properties. J. Algebra 305(1), 68–97 (2006)

    MATH  Google Scholar 

  45. Merris, R.: On vanishing decomposable symmetrized tensors. Linear and Multilinear Algebra 5(2), 79–86 (1977/78)

    Google Scholar 

  46. Merris R., Watkins W.: Inequalities and identities for generalized matrix functions. Linear Algebra Appl 64, 223–242 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pylyavskyy, P.: A2-web immanants. Discrete Math. 310(15-16), 2183–2197, (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Reiner, V., Stanton, D., White, D.: Personal communication. (2007)

  49. Rhoades, B.: Cyclic sieving and promotion. In preparation. (2008)

  50. Rhoades B., Skandera M.: Temperley-Lieb immanants. Ann. Combin 9(4), 451–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rhoades B., Skandera M.: Kazhdan-Lusztig immanants and products of matrix minors. J. Algebra 304(2), 793–811 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rhoades B., Skandera M.: Kazhdan-Lusztig immanants and products of matrix minors, II. Linear and Multilinear Algebra 58(1-2), 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sagan B.: The Symmetric Group. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  54. Skandera M.: On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231- avoiding permutations. J. Pure Appl. Algebra 212(5), 1086–1104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stanley R.: Enumerative Combinatorics Vol. 1. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  56. Stanley R.: Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  57. Stanley, R.: Positivity problems and conjectures. In: Arnold, V., Atiyah, M., Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives American Mathematical Society, pp. 295–319. Amer. Math. Soc., Providence, RI (2000)

  58. Taşkin M.: Properties of four partial orders on standard Young tableaux. J. Combin. Theory Ser. A 113(6), 1092–1119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. van Leeuwen, M.: The Robinson-Schensted and Sch¨utzenberger algorithms, part II: geometric interpretations. CWI report AM-R9209 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendon Rhoades.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhoades, B., Skandera, M. Bitableaux and Zero Sets of Dual Canonical Basis Elements. Ann. Comb. 15, 499–528 (2011). https://doi.org/10.1007/s00026-011-0103-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0103-8

Mathematics Subject Classification

Keywords

Navigation