Skip to main content
Log in

The Number of Spanning Trees in Self-Similar Graphs

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The number of spanning trees of a graph, also known as the complexity, is computed for graphs constructed by a replacement procedure yielding a self-similar structure. It is shown that under certain symmetry conditions exact formulas for the complexity can be given. These formulas indicate interesting connections to the theory of electrical networks. Examples include the well-known Sierpiński graphs and their higher-dimensional analogues. Several auxiliary results are provided on the way—for instance, a property of the number of rooted spanning forests is proven for graphs with a high degree of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow M.T.: Diffusions on fractals. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics, pp. 1–121. Springer, Berlin (1998)

    Chapter  Google Scholar 

  2. Berge C.: Graphs and Hypergraphs. North-Holland Publishing Co., Amsterdam (1976)

    MATH  Google Scholar 

  3. Bollobás B.: Modern Graph Theory. Graduate Texts in Mathematics, Vol. 184. Springer-Verlag, New York (1998)

    Google Scholar 

  4. Brown T.J.N., Mallion R.B., Pollak P., Roth A.: Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes. Discrete Appl. Math. 67(1-3), 51–66 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cayley A.: A theorem on trees. Quart. J. Math. 23, 376–378 (1889)

    Google Scholar 

  6. Chaiken S.: A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic Discrete Methods 3(3), 319–329 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang S.-C., Chen L.-C., Yang W.-S.: Spanning trees on the Sierpinski gasket. J. Stat. Phys. 126(3), 649–667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colbourn C.J.: The Combinatorics of Network Reliability. Oxford University Press, New York (1987)

    Google Scholar 

  9. Guido D., Isola T., Lapidus M.L.: A trace on fractal graphs and the Ihara zeta function. Trans. Amer. Math. Soc. 361(6), 3041–3070 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Harary F., Palmer E.M.: Graphical Enumeration. Academic Press, New York (1973)

    MATH  Google Scholar 

  11. Kigami J.: Analysis on Fractals. Cambridge Tracts in Mathematics, Vol. 143. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  12. Kirchhoff G.R.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  13. Krön B.: Growth of self-similar graphs. J. Graph Theory 45(3), 224–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lyons R.: Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14(4), 491–522 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Metz V.: The short-cut test. J. Funct. Anal. 220(1), 118–156 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moon J.W.: Some determinant expansions and the matrix-tree theorem. Discrete Math. 124(1-3), 163–171 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Neunhäuserer J.: Random walks on infinite self-similar graphs. Electron. J. Probab. 12(46), 1258–1275 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Sabot, C.: Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92, (2003)

  19. Shima T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Japan J. Indust. Appl. Math. 13(1), 1–23 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shrock R., Wu F.Y.: Spanning trees on graphs and lattices in d dimensions. J. Phys. A 33(21), 3881–3902 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Teufl, E.,Wagner, S.: The number of spanning trees of finite Sierpiński graphs. In: Fourth Colloquium on Mathematics and Computer Science, pp. 411–414. Nancy (2006)

  22. Teufl E., Wagner S.: Enumeration problems for classes of self-similar graphs. J. Combin. Theory Ser. A 114(7), 1254–1277 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Teufl.

Additional information

The first author was supported by the Marie Curie Fellowship MEIF-CT-2005-011218.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufl, E., Wagner, S. The Number of Spanning Trees in Self-Similar Graphs. Ann. Comb. 15, 355–380 (2011). https://doi.org/10.1007/s00026-011-0100-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0100-y

Mathematics Subject Classification

Keywords

Navigation