Annals of Combinatorics

, 15:127 | Cite as

Unsigned State Models for the Jones Polynomial



It is a well-known and fundamental result that the Jones polynomial can be expressed as Potts and vertex partition functions of signed plane graphs. Here we consider constructions of the Jones polynomial as state models of unsigned graphs and show that the Jones polynomial of any link can be expressed as a vertex model of an unsigned embedded graph. In the process of deriving this result, we show that for every diagram of a link in S 3 there exists a diagram of an alternating link in a thickened surface (and an alternating virtual link) with the same Kauffman bracket. We also recover two recent results in the literature relating to the Jones and Bollobás-Riordan polynomials and show they arise from two different interpretations of the same embedded graph.

Mathematics Subject Classification

05C10 57M27 


Bollobás-Riordan polynomial embedded graphs Jones polynomial medial graph Potts model ribbon graphs vertex model 


  1. 1.
    Baxter R.J.: Exactly solved models in statistical mechanics. Academic Press, Inc., London (1982)MATHGoogle Scholar
  2. 2.
    Bollobás B., Riordan O.: A polynomial for graphs on orientable surfaces. Proc. London Math. Soc. (3) 83, 513–531 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bollobás B., Riordan O.: A polynomial of graphs on surfaces. Math. Ann. 323(1), 81–96 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chmutov, S., Pak, I.: The Kauffman bracket and the Bollobas-Riordan polynomial of ribbon graphs. arXiv:math.GT/0404475 (2004)Google Scholar
  5. 5.
    Chmutov S., Pak I.: The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial. Mosc. Math. J. 7, 409–418 (2007)MATHMathSciNetGoogle Scholar
  6. 6.
    Chmutov S., Voltz J.: Thistlethwaite’s theorem for virtual links. J. Knot Theory Ramifications 17(10), 1189–1198 (2008)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Dasbach O.T., Futer D., Kalfagianni E., Lin X.-S., Stoltzfus N.W.: The Jones polynomial and graphs on surfaces. J. Combin. Theory Ser. B 98(2), 384–399 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fortuin C.M., Kasteleyn P.W.: On the random-cluster model, I. Introduction and relation to other models. Physica 57, 536–564 (1972)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Huggett, S., Moffatt, I., Expansions for the Bollobás-Riordan polynomial of separable ribbon graphs. Ann. Combin. (to appear)Google Scholar
  10. 10.
    Inoue K., Kaneto T.: A Jones type invariant of links in the product space of a surface and the real line. J. Knot Theory Ramifications 3(2), 153–161 (1994)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jones V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. 12(1), 103–111 (1985)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Jones V.F.R.: On knot invariants related to some statistical mechanical models. Pacific J. Math. 137(2), 311–334 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Kauffman L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kauffman L.H.: Statistical mechanics and the Jones polynomial. Amer.Math. Soc., Providence, RI (1988)Google Scholar
  15. 15.
    Kauffman L.H.: A Tutte polynomial for signed graphs. Discrete Appl. Math. 25(1-2), 105–127 (1989)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Loebl M., Moffatt I.: The chromatic polynomial of fatgraphs and its categorification. Adv. Math. 217(4), 1558–1587 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Loebl M.: Chromatic polynomial, q-binomial counting and colored Jones function. Adv. Math. 211(2), 546–565 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Moffatt I.: Knot invariants and the Bollobás-Riordan polynomial of embedded graphs. European J. Combin. 29(1), 95–107 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Perk J.H.H., Wu F.Y.: Graphical approach to the nonintersecting string model: startriangle equation, inversion relation, and exact solution. Phys. A 138(1-2), 100–124 (1986)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., Vol. 327, pp. 173–226. Cambridge Univ. Press, Cambridge (2005)Google Scholar
  21. 21.
    Thistlethwaite M.B.: A spanning tree expansion of the Jones polynomial. Topology 26(3), 297–309 (1987)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Turaev V.G.: The Yang-Baxter equation and invariants of links. Invent. Math. 92(3), 527–553 (1988)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wu F.Y.: Knot theory and statistical mechanics. Rev. Modern Phys. 64(4), 1099–1131 (1992)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Wu F.Y.: Jones polynomial as a Potts model partition function. J. Knot Theory Ramifications 1(1), 47–57 (1992)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWest WaterlooCanada
  2. 2.Department of Mathematics and StatisticsUniversity of South AlabamaMobileUSA

Personalised recommendations