Skip to main content
Log in

Lyapunov Exponents for Generalized Szegő Cocycles

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Lyapunov exponents of the generalized dynamically defined Szegő cocycle, corresponding to orthogonal polynomials on the circle with radius \(\lambda \). We give the upper and lower bounds of the top Lyapunov exponent in our setting by realification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

Notes

  1. That means \(\int _{\mathbb {T}}\log \Vert A^z(x)\Vert dx<\infty \).

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  Google Scholar 

  2. Alkorn, K., Zhang, Z.: On the correspondence between domination and the spectrum of Jacobi operators. Trans. Am. Math. Soc. 375, 8101–8149 (2022)

    Article  MathSciNet  Google Scholar 

  3. Avila, A.: Global theory of one-frequency Schrödinger operator. Acta Math. 215, 1–54 (2015)

    Article  MathSciNet  Google Scholar 

  4. Avila, A., Damanik, D., Zhang, Z.: Schrödinger operators with potentials generated by hyperbolic transformations: II. Large deviations and Anderson localization (2024). arXiv:2402.00215

  5. Avila, A., Jitomirskaya, S., Sadel, C.: Complex one-frequency cicycles. J. Eur. Math. Soc. 16, 1915–1935 (2014)

    Article  Google Scholar 

  6. Barreira, L., Pesin, Y.: Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series, vol. 23. American Mathematical Society, Providence (2002)

    Google Scholar 

  7. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Nat. Acad. Sci. 17, 656–660 (1931)

    Article  Google Scholar 

  8. Bourgain, J.: On nonperturbative localization with quasi-periodic potential. Ann. Math. 152, 835–879 (2000)

    Article  MathSciNet  Google Scholar 

  9. Bucaj, V., Damanik, D., Fillman, J., Gerbuz, V., Vandenboom, T., Wang, F., Zhang, Z.: Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent. Trans. Am. Math. Soc. 372, 3619–3667 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  Google Scholar 

  11. Damanik, D.: Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proceedings of Symposia in Pure Mathematics, 76), pp. 539–563, Part 2. American Mathematical Society, Providence, RI (2007)

  12. Damanik, D., Fillman, J., Lukic, M., Yessen, W.: Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin. Dyn. Syst. Ser. S 9, 1009–1023 (2016)

    MathSciNet  Google Scholar 

  13. Damanik, D., Guo, S., Ong, D.: Simon’s OPUC Hausdorff dimension conjecture. Math. Ann. 384, 1–37 (2022)

    Article  MathSciNet  Google Scholar 

  14. Duren, P.: Theory of \(H^p\) spaces. In: Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

  15. Duarte, P., Klein, S.: Positive Lyapunov exponent for higher dimensional quasiperiodic cocycles. Commun. Math. Phys. 332, 189–219 (2014)

    Article  MathSciNet  Google Scholar 

  16. Federer, H.: Geometric Measure Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  17. Fang, L., Damanik, D., Guo, S.: Generic spectral results for CMV matrices with dynamically defined Verblunsky coefficients. J. Funct. Anal. 279, 108803 (2020)

    Article  MathSciNet  Google Scholar 

  18. Guo, S., Damanik, D., Ong, D.: Subordinacy theory for extended CMV matrices. Sci. China Math. 65, 539–558 (2022)

    Article  MathSciNet  Google Scholar 

  19. Ising, E.: Beitrag zur theories des ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  20. Johnson, R.: Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61, 54–78 (1986)

    Article  MathSciNet  Google Scholar 

  21. Kotani, S.: Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic Analysis (Katata/Kyoto, 1982), pp. 225–247. North-Holland Math. Library 32, North-Holland, Amsterdam (1984)

  22. Kotani, S., Simon, B.: Stochastic Schrödinger operators and Jacobi matrices on the strip. Commun. Math. Phys. 119, 403–429 (1988)

    Article  Google Scholar 

  23. Oseledets, V.: A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Tr. Mosk. Mat. Obs. 19, 179–210 (1968)

    MathSciNet  Google Scholar 

  24. Remling, C.: Spectral Theory of Canonical Systems. De Gruyter, Berlin, Boston (2018)

    Book  Google Scholar 

  25. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  Google Scholar 

  26. Simon, B.: Orthogonal polynomials on the Unit Circle, Part 1: Classical Theory. AMS Colloquium Series, American Mathematical Society, Providence (2005)

    Google Scholar 

  27. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Series, American Mathematical Society, Providence (2005)

    Google Scholar 

  28. Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208, 120–154 (2007)

    Article  MathSciNet  Google Scholar 

  29. Wang, F., Damanik, D.: Anderson localization for quasi-periodic CMV matrices and quantum walks. J. Funct. Anal. 276, 1978–2006 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Z.: Positive Lyapunov exponents for quasiperiodic Szegő cocycles. Nonlinearity 25, 1771–1797 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z.: Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J. Spectr. Theory 10, 1471–1517 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

L.F. was supported by National Nature Science Foundation of China (NSFC 12301235), Natural Science Foundation of Shandong Province (ZR2022QA011). F.W. was supported by National Nature Science Foundation of China (NSFC 12001551), Guangdong Basic and Applied Basic Research Foundation (2019A1515110875, 2021A1515010351).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fengpeng Wang.

Ethics declarations

Conflict of interest

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Wang, F. Lyapunov Exponents for Generalized Szegő Cocycles. Results Math 79, 145 (2024). https://doi.org/10.1007/s00025-024-02168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02168-6

Keywords

Mathematics Subject Classification

Navigation