Skip to main content
Log in

Sums of Squares on Hypersurfaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We show that the Pythagoras number of rings of type \({\mathbb {R}}[x,y, \sqrt{f(x,y)}]\) is infinite, provided that the polynomial f(xy) satisfies some mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Artin, E.: Über die Zerlegung definitier Funktionen in Quadrate. Abh. Math. Sem. Hamburg 5, 100–115 (1927)

    Article  Google Scholar 

  2. Banecki, J.: Extensions of k-regulous functions from two-dimensional varieties, arXiv:2303.02481 [math.AG]

  3. Banecki, J., Kowalczyk, T.: Sums of even powers of k-regulous functions. Indag. Math. 34, 477–487 (2023)

    Article  MathSciNet  Google Scholar 

  4. Benoist, O.: On Hilbert’s 17th problem in low degree. Algebra Number Theory 11(4), 929–959 (2017)

    Article  MathSciNet  Google Scholar 

  5. Benoist, O.: Sums of squares in function fields over Henselian local fields. Math. Ann. 376, 683–692 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  Google Scholar 

  7. Cassels, J.W.S.: On the representation of rational functions as sums of squares. Acta Arith. 9, 79–82 (1964)

    Article  MathSciNet  Google Scholar 

  8. Cassels, J.W.S., Ellison, W.S., Pfister, A.: On sums of squares and on elliptic curves over function fields. J. Number Theory 3, 125–149 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  9. Choi, M.-D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Proceedings of Symposia in Pure Mathematics. Am. Math. Soc. 58, 103–126 (1995)

  10. Choi, M.-D., Dai, Z.D., Lam, T.Y., Reznick, B.: The Pythagoras number of some affine algebras and local algebras. J. Reine Angew. Math. 336, 45–82 (1982)

    MathSciNet  Google Scholar 

  11. Choi, M.-D., Lam, T.Y., Reznick, B., Rosenberg, A.: Sums of squares in some integral domains. J. Algebra 65, 234–256 (1980)

    Article  MathSciNet  Google Scholar 

  12. Fernando, J.F.: Positive semidefinite analytic functions on real analytic surfaces. J. Geom. Anal. 31, 12375–12410 (2021)

    Article  MathSciNet  Google Scholar 

  13. Hoffman, D.W.: Pythagoras number of fields. J. Amer. Math. Soc. 12(3), 839–848 (1999)

    Article  MathSciNet  Google Scholar 

  14. Mahe, L.: Level and Pythagoras number of some geometric rings. Math. Z. 204, 615–629 (1992)

    Article  MathSciNet  Google Scholar 

  15. Kowalczyk, T., Miska, P.: On Waring numbers of Henselian rings. arXiv:2206.09904 [math.AC]

  16. Motzkin, T.S.: The arithmetic-geometric inequality. In: Shishia, O. (ed.) Inequalities, pp. 205–224. Academic Press, New York (1967)

    Google Scholar 

  17. Pfister, A.: Zur Darstellung definiter Funktionen als Summe von Quadraten. Invent. Math. 4, 229–337 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. Pourchet, Y.: Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arith. 19, 89–104 (1971)

    Article  MathSciNet  Google Scholar 

  19. Prestel, A., Delzell, C.: Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra, Springer Monographs in Mathematics. Springer- Verlag, Berlin Heidelberg (2001)

  20. Reznick, B.: Sums of even powers of real linear forms. Mem. Amer. Math. Soc. 96 (1992)

  21. Scheiderer, C.: On sums of squares in local rings. J. Reine Angew. Math. 540, 205–227 (2001)

    MathSciNet  Google Scholar 

  22. Scheiderer, C.: Extreme Points of Gram Spectrahedra of Binary Forms. Discrete Comput. Geom. 67, 1174–1190 (2022)

    Article  MathSciNet  Google Scholar 

  23. To, W.-K., Yeung, S.-K.: Effective isometric embeddings for certain Hermitian holomorphic line bundles. J. London Math. Soc. (2) 73, 607–624 (2006)

    Article  MathSciNet  Google Scholar 

  24. To, W.-K., Yeung, S.-K.: Effective Łojasiewicz inequality for arithmetically defined varieties and a geometric application to bihomogeneous polynomials Int. J. Math. 20, 915–944 (2009)

    MathSciNet  Google Scholar 

  25. Vill, J.: Gram spectrahedra of ternary quartics. J. Symb. Comput. 116, 263–283 (2023)

    Article  MathSciNet  Google Scholar 

  26. Vill. J.: Integrating spectahedra, arXiv:2303.05815 [math.AG]

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kowalczyk.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Błachut, K., Kowalczyk, T. Sums of Squares on Hypersurfaces. Results Math 79, 90 (2024). https://doi.org/10.1007/s00025-023-02118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02118-8

Keywords

Mathematics Subject Classification

Navigation