Skip to main content
Log in

On Dimension of Fractal Functions on Product of the Sierpiński Gaskets and Associated Measures

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this article, our aim is to estimate the fractal dimensions of the graphs of fractal interpolation functions (FIFs) on the product of two Sierpiński gaskets. To achieve this, we employ the Hölder function spaces. We also define a fractal operator on Hölder spaces originated from the FIFs and establish some operator-theoretic properties such as bounded below and invariant subspaces of it. Additionally, we provide bounds on the Hausdorff dimensions of the invariant measures that are supported on the graphs of these FIFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used to support this study.

Code Availability

Not applicable.

References

  1. Attia, N., Selmi, B.: A multifractal formalism for Hewitt–Stromberg measures. J. Geom. Anal. 31, 825–862 (2021)

    Article  MathSciNet  Google Scholar 

  2. Agrawal, V., Prajapati, A., Sahu, A., Som, T.: Some results on continuous dependence of fractal functions on the Sierpiński gasket (2023). arXiv preprint arXiv:2304.11866

  3. Agrawal, V., Som, T.: Fractal dimension of \(\alpha \)-fractal function on the Sierpiński Gasket. Eur. Phys. J. Spec. Top. 230, 3781–3787 (2021)

    Article  Google Scholar 

  4. Agrawal, V., Som, T.: \(L^{p}\) approximation using fractal functions on the Sierpiński gasket. Results Math. 77, 74 (2022). https://doi.org/10.1007/s00025-021-01565-5

    Article  Google Scholar 

  5. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    Google Scholar 

  6. Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bockelman, B., Strichartz, R.S.: Partial differential equations on products of Sierpinski gaskets. Indiana Univ. Math. J. 56(3), 1361–1375 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bollobás, B.: Linear Analysis, and Introductory Course, 2nd edn. Cambridge University Press (1999)

    Book  Google Scholar 

  9. Celik, D., Kocak, S., Özdemir, Y.: Fractal interpolation on the Sierpiński Gasket. J. Math. Anal. Appl. 337, 343–347 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44, 655–676 (2006)

    Article  MathSciNet  Google Scholar 

  11. Chandra, S., Abbas, S.: Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. Fract. Calc. Appl. Anal. 25, 1022–1036 (2022)

    Article  MathSciNet  Google Scholar 

  12. Chandra, S., Abbas, S.: Fractal dimensions of mixed Katugampola fractional integral associated with vector-valued functions. Chaos Solitons Fractals 164, 112648 (2022)

    Article  MathSciNet  Google Scholar 

  13. Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann–Liouville integral. Numer. Algorithms 91, 1021–1046 (2022)

    Article  MathSciNet  Google Scholar 

  14. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(3), 2150066 (2021)

    Article  ADS  Google Scholar 

  15. Chandra, S., Abbas, S.: On fractal dimensions of fractal functions using functions spaces. Bull. Aust. Math. Soc. 106, 470–480 (2022)

    Article  MathSciNet  Google Scholar 

  16. Cutler, D.: Strong and weak duality principles for fractal dimension in Euclidean space. Math. Proc. Camb. Philos. Soc. 118, 393–410 (1995)

    Article  MathSciNet  Google Scholar 

  17. Deliu, A., Geronimo, J.S., Shonkwiler, R., Hardin, D.: Dimensions associated with recurrent self-similar sets. Math. Proc. Camb. Philos. Soc. 110(2), 327–336 (1991)

    Article  MathSciNet  Google Scholar 

  18. Douzi, Z., Selmi, B.: Projection theorems for Hewitt–Stromberg and modified intermediate dimensions. Results Math. 77, 158 (2022)

    Article  MathSciNet  Google Scholar 

  19. Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, New York (1998)

    Book  Google Scholar 

  20. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1990)

    Google Scholar 

  21. Gang, C.: The smoothness and dimension of fractal interpolation function. Appl. Math. J. Chin. Univ. Ser. B 11, 409 (1996)

    Article  MathSciNet  Google Scholar 

  22. Geronimo, J.S., Hardin, D.P.: Fractal interpolation surfaces and a related 2-D multiresolution analysis. J. Math. Anal. Appl. 176, 561–586 (1993)

    Article  MathSciNet  Google Scholar 

  23. Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. Math. 180(2), 773–822 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hutchinson, J.E.: Fractals and self similarity. Indiana Uni. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  25. Jha, S., Verma, S., Chand, A.K.B.: Non-stationary zipper \(\alpha \)-fractal functions and associated fractal operator. Fract. Calc. Appl. Anal. 25, 1527–1552 (2022)

    Article  MathSciNet  Google Scholar 

  26. Jha, S., Verma, S.: Dimensional analysis of \(\alpha \) -fractal Functions. Results Math. 76(4), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  27. Liang, Y.S., Su, W.Y.: The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus. Chaos Solitons Fractals 34, 682–692 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Massopust, P.: Fractal surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)

    Article  MathSciNet  Google Scholar 

  29. Massopust, P., Hardin, D.: Fractal interpolation functions from \({\mathbb{R} }^n\) into \({\mathbb{R} }^m\) and their projections. J. Anal. App. 12(3), 535–548 (1993)

    Google Scholar 

  30. Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc. 298, 793–803 (1986)

    Article  MathSciNet  Google Scholar 

  31. Daniel Mauldin, R., Urbański, M.: Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Am. Math. Soc. 351(12), 4995–5025 (1999)

    Article  MathSciNet  Google Scholar 

  32. Navascués, M.A., Sebastian, M.V.: Some results of convergence of cubic spline fractal interpolation functions. Fractals 11(1), 1–7 (2003)

    Article  MathSciNet  Google Scholar 

  33. Navascués, M.A., Sebastián, M.V.: Generalization of hermite functions by fractal interpolation. J. Approx. Theory 131, 19–29 (2004)

    Article  MathSciNet  Google Scholar 

  34. Navascués, M.A.: Fractal polynomial interpolation. J. Anal. App. 24(2), 401–418 (2005)

    MathSciNet  Google Scholar 

  35. Navascués, M.A., Verma, S., Viswanathan, P.: Concerning the vector-valued fractal interpolation functions on the Sierpiński gasket. Mediterr. J. Math. 18, 202 (2021)

    Article  Google Scholar 

  36. Navascues, M.A., Verma, S.: Non-stationary alpha-fractal surfaces. Mediterr. J. Math. 20(1), 48 (2023)

    Article  Google Scholar 

  37. Nussbaum, R.D., Priyadarshi, A., Lunel, S.V.: Positive operators and Hausdorff dimension of invariant sets. Trans. Am. Math. Soc. 364(2), 1029–1066 (2012)

    Article  MathSciNet  Google Scholar 

  38. Pan, X.: Fractional calculus of fractal interpolation function on \([0, b]\). Abstr. Appl. Anal. 21, 640628 (2014)

    MathSciNet  Google Scholar 

  39. Prasad, S.A., Verma, S.: Fractal interpolation functions on products of the Sierpinski gaskets. Chaos Solitons Fractals 166, 112988 (2023)

    Article  MathSciNet  Google Scholar 

  40. Prasad, S.A.: Node insertion in coalescence fractal interpolation function. Chaos Solitons Fractals 49, 16–20 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ri, S.-G., Ruan, H.-J.: Some properties of fractal interpolation functions on Sierpinski gasket. J. Math. Anal. Appl. 380, 313–322 (2011)

    Article  MathSciNet  Google Scholar 

  42. Ruan, H.-J., Su, W.-Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory 161, 187–197 (2009)

    Article  MathSciNet  Google Scholar 

  43. Ruan, H.-J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18, 119–125 (2010)

    Article  MathSciNet  Google Scholar 

  44. Ruan, H.-J., Xu, Q.: Fractal interpolation surfaces on rectangular grids. Bull. Aust. Math. Soc. 91, 435–446 (2015)

    Article  MathSciNet  Google Scholar 

  45. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487, 124036 (2020)

    Article  MathSciNet  Google Scholar 

  46. Selmi, B.: A review on multifractal analysis of Hewitt–Stromberg measures. J. Geom. Anal. 32, 1–44 (2022)

    Article  MathSciNet  Google Scholar 

  47. Selmi, B.: Average Hewitt–Stromberg and box dimensions of typical compact metric spaces. Quaest. Math. 46, 411–4441 (2023)

    Article  MathSciNet  Google Scholar 

  48. Shmerkin, P.: On Furstenberg’s intersection conjecture, self-similar measures, and the \(L^q\) norms of convolutions. Ann. Math. (2) 189(2), 319–391 (2019)

    Article  MathSciNet  Google Scholar 

  49. Strichartz, R.S.: Analysis on products of fractals. Trans. Am. Math. Soc. 357(2), 571–615 (2005)

    Article  MathSciNet  Google Scholar 

  50. Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91, 54–74 (1982)

    Article  MathSciNet  Google Scholar 

  51. Verma, M., Priyadarshi, A., Verma, S.: Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket. Fract. Calc. Appl. Anal. 26, 1294–1325 (2023)

    Article  MathSciNet  Google Scholar 

  52. Verma, M., Priyadarshi, A.: Dimensions of new fractal functions and associated measures. Numer. Algorithms 8, 1–30 (2023)

    MathSciNet  Google Scholar 

  53. Verma, M., Priyadarshi, A.: Graphs of continuous functions and fractal dimension. Chaos Solitons Fractals 172, 113513 (2023)

    Article  MathSciNet  Google Scholar 

  54. Verma, M., Priyadarshi, A., Verma, S.: Vector-valued fractal functions: fractal dimension and fractional calculus. Indag. Math. 34(4), 830–853 (2023)

    Article  MathSciNet  Google Scholar 

  55. Verma, S.: Hausdorff dimension and infinitesimal similitudes on complete metric spaces (2021). arXiv preprint arXiv:2101.07520

  56. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: fractal dimension and fractional integral. Indag. Math. 31, 294–309 (2020)

    Article  MathSciNet  Google Scholar 

  57. Verma, S., Jha, S.: A study on fractal operator corresponding to non-stationary fractal interpolation functions. Front. Fractal Anal. Recent Adv. Challenges 20, 50–66 (2022)

    Article  MathSciNet  Google Scholar 

  58. Verma, S., Massopust, P.R.: Dimension preserving approximation. Aequationes Math. 96, 1233–1247 (2022)

    Article  MathSciNet  Google Scholar 

  59. Verma, S., Sahu, A.: Bounded variation on the Sierpiński Gasket. Fractals 30(07), 1–12 (2022)

    Article  Google Scholar 

  60. Wang, H.-Y., Yu, J.-S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second author is supported by the Analysis, Probability & Fractals Laboratory (No. LR18ES17). The third author is supported by the Ministry of Education (IIIT Allahabad, India) financially through his CPDA grant.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally to this manuscript.

Corresponding author

Correspondence to Bilel Selmi.

Ethics declarations

Conflict of Interest

We do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, R., Selmi, B. & Verma, S. On Dimension of Fractal Functions on Product of the Sierpiński Gaskets and Associated Measures. Results Math 79, 73 (2024). https://doi.org/10.1007/s00025-023-02108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02108-w

Keywords

Mathematics Subject Classification

Navigation