Skip to main content
Log in

Normal Critical Surfaces in \({\mathbb {C}}P^{2}\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \(F: M\rightarrow {\mathbb {C}}P^{2}\) be an isometric immersion of a closed surface in the complex projective plane \({\mathbb {C}}P^{2}\). In this paper, we consider the functional \(W_{N}(F)=\int _{M}({\overline{K}}^{\perp }-K^{\perp })\textrm{d}M\), which is a global conformal invariant. The critical surfaces of \(W_{N}(F)\) are called normal critical surfaces. We compute the first variation of \(W_{N}(F)\). Moreover, we build an index formula for the normal critical surfaces in the spirits of Webster (J Differ Geom 20:463–470, 1984.), Wolfson (J Diff Geom 29:281–294, 1989), Chen-Tian (Geom Funct Anal 7:873–916, 1997) and Han-Li (J Eur Math Soc 12:505–527, 2010). In particular, when the Kähler angle \(\alpha \) satisfies \(\cos \alpha \leqslant -\tfrac{\sqrt{5}}{3}\) or \(-\tfrac{\sqrt{5}}{3}\leqslant \cos \alpha \leqslant \tfrac{\sqrt{5}}{3}\) or \(\cos \alpha \geqslant \tfrac{\sqrt{5}}{3}\), M is the normal critical surface if and only if it is the minimal surface with constant Kähler angle \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Bers, L.: An outline of the theory of pseudo-analytic functions. Bull. Am. Math. Soc. 62, 291–331 (1956)

    Article  Google Scholar 

  2. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Diff. Geom. 20, 23–53 (1984)

    MathSciNet  Google Scholar 

  3. Babich, M., Bobenko, A.: Willmore tori with umbilical lines and minimal surfaces in hyperbolic space. Duke Math. J. 72, 151–185 (1993)

    Article  MathSciNet  Google Scholar 

  4. Castro, I., Urbano, F.: Willmore surfaces of \({\mathbb{R} }^{4}\) and the Whitney sphere. Ann. Glob. Anal. Geom. 19, 153–175 (2001)

    Article  Google Scholar 

  5. Chen, B.Y.: Some conformal invariants of submanifolds and their applications. Boll. Un. Mat. Ital. 10, 380–385 (1974)

    MathSciNet  Google Scholar 

  6. Chen, J., Tian, G.: Minimal surfaces in Riemannian 4-manifolds. Geom. Funct. Anal. 7, 873–916 (1997)

    Article  MathSciNet  Google Scholar 

  7. Chern, S.S., Wolfson, J.G.: Minimal surfaces by moving frames. Am. J. Math. 105, 59–83 (1983)

    Article  MathSciNet  Google Scholar 

  8. Han, X., Li, J.: Symplectic critical surfaces in Kähler surfaces. J. Eur. Math. Soc. 12, 505–527 (2010)

    Article  MathSciNet  Google Scholar 

  9. Han, X., Li, J.: The second variation of the functional L of symplectic critical surfaces in Kähler surfaces. Commun. Math. Stat. 2, 311–330 (2014)

    Article  MathSciNet  Google Scholar 

  10. Han, X., Li, J., Sun, J.: The deformation of symplectic critical surfaces in a Kähler surface-I. Int. Math. Res. Not. 20, 6290–6328 (2018)

    Article  Google Scholar 

  11. Han, X., Li, J., Sun, J.: The deformation of symplectic critical surfaces in a Kähler surface-II-compactness. Calc. Var. PDE 56, 1–22 (2017)

    Article  CAS  Google Scholar 

  12. Hu, Z., Li, H.: Willmore submanifolds in a Riemannian manifold. Proceedings of the Workshop, Contem. Geom. and Related Topics, 251–275, (2004)

  13. Hu, Z., Li, H.: Willmore Lagrangian spheres in the complex Euclidean space \({\mathbb{C} }^{n}\). Ann. Glob. Anal. Geom. 25, 73–98 (2004)

    Article  Google Scholar 

  14. Kusner, R.: Comparison surfaces for the Willmore problem. Pac. J. Math. 138, 317–345 (1989)

    Article  MathSciNet  Google Scholar 

  15. Kenmotsu, K., Zhou, D.: The classification of the surfaces with parallel mean curvature vector in two dimensional complex space form. Am. J. Math. 122, 295–317 (2000)

    Article  MathSciNet  Google Scholar 

  16. Li, H.: Willmore submanifolds in a sphere. Math. Res. Lett. 9, 771–790 (2002)

    Article  MathSciNet  Google Scholar 

  17. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and first eigenvalue of compact surfaces. Invent. Math. 69, 269–291 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ma, H., Mironov, A.E., Zuo, D.: An energy functional for Lagrangian tori in \({\mathbb{C} }P^{2}\). Ann. Glob. Anal. Geom. 53, 583–595 (2018)

    Article  Google Scholar 

  19. Ma, X., Wang, C.P., Wang, P.: Classification of Willmore two-spheres in the 5-dimensional sphere. J. Differ. Geom. 106, 245–281 (2017)

    Article  MathSciNet  Google Scholar 

  20. Marques, F., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. 179, 683–782 (2014)

    Article  MathSciNet  Google Scholar 

  21. Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Am. Math. Soc. 352, 4469–4486 (2000)

    Article  MathSciNet  Google Scholar 

  22. Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. math. 83, 153–166 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Montiel, S., Urbano, F.: A Willmore functional for compact surfaces in the complex projective space. J. Reine Angew. Math. 546, 139–154 (2002)

    MathSciNet  Google Scholar 

  24. Pinkal, U.: Hopf tori in \({\mathbb{S} }^{3}\). Invent. Math. 81, 379–386 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ros, A.: The Willmore conjecture in the real projective space. Math. Res. Lett. 6, 487–493 (1999)

    Article  MathSciNet  Google Scholar 

  26. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1, 281–326 (1993)

    Article  MathSciNet  Google Scholar 

  27. Wang, C.P.: Mobius geometry of submanifolds in \({\mathbb{S} }^{n}\). Manuscripta Math. 96, 517–534 (1998)

    Article  MathSciNet  Google Scholar 

  28. Webster, S.M.: Minimal surfaces in a Kähler surface. J. Differ. Geom. 20, 463–470 (1984)

    Article  Google Scholar 

  29. Willmore, T.. J.: Notes on embedded surfaces. Ann. Stiint. Univ. Al. I. Cuza, Iasi, Sect. I a Mat 11, 493–496 (1965)

    MathSciNet  Google Scholar 

  30. Wolfson, J.G.: Minimal surfaces in Kähler surfaces and Ricci curvature. J. Differ. Geom. 29, 281–294 (1989)

    Article  Google Scholar 

Download references

Funding

The author thank the referee for his helpful comments. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Wei Yao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, ZW. Normal Critical Surfaces in \({\mathbb {C}}P^{2}\). Results Math 79, 89 (2024). https://doi.org/10.1007/s00025-023-02103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02103-1

Keywords

Mathematics Subject Classification

Navigation