Skip to main content
Log in

Lie–Trotter Formulae in Jordan–Banach Algebras with Applications to the Study of Spectral-Valued Multiplicative Functionals

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We establish some Lie–Trotter formulae for unital complex Jordan–Banach algebras, showing that for any elements abc in a unital complex Jordan–Banach algebra \(\mathfrak {A}\) the identities

$$\begin{aligned}{} & {} \lim _{n\rightarrow \infty } \left( e^{\frac{a}{n}}\circ e^{\frac{b}{n}} \right) ^{n} = e^{a+b},\ \lim _{n\rightarrow \infty } \left( U_{e^{\frac{a}{n}}} \left( e^{\frac{b}{n}}\right) \right) ^{n} = e^{2 a+b}, \hbox { and }\\{} & {} \lim _{n\rightarrow \infty } \left( U_{e^{\frac{a}{n}},e^{\frac{c}{n}}} \left( e^{\frac{b}{n}}\right) \right) ^{n} = e^{a+b + c} \end{aligned}$$

hold. These formulae are actually deduced from a more general result involving holomorphic functions with values in \(\mathfrak {A}\). These formulae are employed in the study of spectral-valued (non-necessarily linear) functionals \(f:\mathfrak {A}\rightarrow \mathbb {C}\) satisfying \(f(U_x (y))=U_{f(x)}f(y),\) for all \(x,y\in \mathfrak {A}\). We prove that for any such a functional f,  there exists a unique continuous (Jordan-) multiplicative linear functional \(\psi :\mathfrak {A}\rightarrow \mathbb {C}\) such that \( f(x)=\psi (x),\) for every x in the connected component of the set of all invertible elements of \(\mathfrak {A}\) containing the unit element. If we additionally assume that \(\mathfrak {A}\) is a JB\(^*\)-algebra and f is continuous, then f is a linear multiplicative functional on \(\mathfrak {A}\). The new conclusions are appropriate Jordan versions of results by Maouche, Brits, Mabrouk, Schulz, and Touré.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Statement Data sharing is not applicable to this article as no datasets were generated or analyzed during the preparation of the paper.

References

  1. Alfsen, E.M., Shultz, F.W.: Geometry of State Spaces of Operator Algebras, Mathematics: Theory and Applications. Birkhäuser Boston Inc, Boston (2003)

    Book  Google Scholar 

  2. Applebaum, D.: Semigroups of linear operators. In: With Applications to Analysis, Probability and Physics. London Mathematical Society Student Texts, 93. Cambridge University Press, Cambridge (2019)

  3. Aupetit, B.: A Primer on Spectral Theory. Universitext, Springer, New York (1991)

    Book  Google Scholar 

  4. Aupetit, B.: Spectral characterization of the socle in Jordan–Banach algebras. Math. Proc. Camb. Phil. Soc. 117, 479–489 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bonsall, F.F., Duncan, J.: Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer, New York, Heidelberg (1973)

  6. Brits, R., Mabrouk, M., Touré, C.: A multiplicative Gleason–Kahane–Żelazko theorem for C\(^*\)-algebras. J. Math. Anal. Appl. 500(1), Paper No. 125089 (2021)

  7. Cabrera García, M., Rodriguez Palacios, A.: Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems. Cambridge University Press (2014)

  8. Davies, E.B.: One-Parameter Semigroups, London Mathematical Society, Monographs, No. 15. London etc.: Academic Press, A Subsidiary of Harcourt Brace Jovanovich (1980)

  9. Garrett, P.: Modern Analysis of Automorphic Forms by Example, vol. 2. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  10. Hall, B.C.: Lie groups, Lie algebras, and representations. In: An Elementary Introduction. Graduate Texts in Mathematics, vol. 222. Springer, New York (2003)

  11. Hall, B.C.: Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol. 267. Springer, New York (2013)

  12. Hanche-Olsen, H., Størmer, E.: Jordan Operator Algebras. Pitman, London (1984)

    Google Scholar 

  13. Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. (2) 35(1), 29–64 (1934)

  14. Kato, T.: Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In: Topics in Functional Analysis, Essays dedic. M. G. Krein, Adv. Math., Suppl. Stud. 3, pp. 185–195. Acadamic Press (1978)

  15. Kowalski, S., Słodkowski, Z.: A characterization of multiplicative linear functionals in Banach algebras. Studia Math. 67, 215–223 (1980)

    Article  MathSciNet  Google Scholar 

  16. Li, L., Peralta, A.M., Wang, L., Wang, Y.S.: Weak-2-local isometries on uniform algebras and Lipschitz algebras. Publ. Mat. Barc. 63(1), 241–264 (2019)

    Article  MathSciNet  Google Scholar 

  17. Loos, O.: On the set of invertible elements in Banach Jordan algebras. Results Math. 29(1–2), 111–114 (1996)

    Article  MathSciNet  Google Scholar 

  18. Maouche, A.: Formes multiplicatives à valeurs dans le spectre. Colloq. Math. 71(1), 43–45 (1996)

    Article  MathSciNet  Google Scholar 

  19. Oi, S.: A spherical version of the Kowalski-Słodkowski theorem and its applications. J. Aust. Math. Soc. 111(3), 386–411 (2021)

    Article  MathSciNet  Google Scholar 

  20. Peralta, A.M.: Surjective isometries between sets of invertible elements in unital Jordan–Banach algebras. J. Math. Anal. Appl. 502(2), Article ID 125284 (2021)

  21. Simon, B.: Functional Integration and Quantum Mechanics, Pure and Applied Mathematics, vol. 86. Academic Press, New York, San Francisco, London (1979)

    Google Scholar 

  22. Touré, C., Brits, R.: Multiplicative spectral functionals on \(C(X)\). Bull. Aust. Math. Soc. 102(2), 303–307 (2020)

    Article  MathSciNet  Google Scholar 

  23. Touré, C., Schulz, F., Brits, R.: Multiplicative maps into the spectrum. Studia Math. 239(1), 55–66 (2017)

    Article  MathSciNet  Google Scholar 

  24. Żelazko, W.: A characterization of multiplicative linear functionals in complex Banach algebras. Studia Math. 30, 83–85 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for the helpful comments that improved the quality and presentation of the manuscript.

Funding

Second and third authors partially supported by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” Grant PID2021-122126NB-C31 and Junta de Andalucía Grants FQM185, and FQM375. First author supported by Grant FPU21/00617 at University of Granada founded by Ministerio de Universidades (Spain), and by the IMAG–María de Maeztu grant CEX2020-001105-M/AEI/10.13039/ 501100 011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Peralta.

Ethics declarations

Conflicts of interest

The authors declare that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escolano, G.M., Peralta, A.M. & Villena, A.R. Lie–Trotter Formulae in Jordan–Banach Algebras with Applications to the Study of Spectral-Valued Multiplicative Functionals. Results Math 79, 17 (2024). https://doi.org/10.1007/s00025-023-02043-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02043-w

Keywords

Mathematics Subject Classification

Navigation