Skip to main content
Log in

The Continuous Dependence for the Navier–Stokes Equations in \(\dot{B}^{\frac{d}{p}-1}_{p,r}\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we mainly investigate the Cauchy problem for the incompressible Navier–Stokes equations in homogeneous Besov spaces \(\dot{B}^{\frac{d}{p}-1}_{p,r}\) with \(1\le p<\infty ,\ 1\le r\le \infty , \ d\ge 2\). Firstly, we prove the local existence of the solution and give a lower bound of the lifespan T of the solution. The lifespan depends on the Littlewood–Paley decomposition of the initial data, that is \(\dot{\Delta }_j u_0\). Secondly, if the initial data \(u^n_0\rightarrow u_0\) in \(\dot{B}^{\frac{d}{p}-1}_{p,r}\), then the corresponding lifespan \(T_n\rightarrow T\). Thirdly, we prove that the data-to-solutions map is continuous in \(\dot{B}^{\frac{d}{p}-1}_{p,r}\). Therefore, the Cauchy problem of the Navier–Stokes equations is locally well-posed in the critical Besov spaces in the Hadamard sense. Moreover, we also obtain the well-posedness and weak-strong uniqueness results in \(L^{\infty }L^2\cap L^{2}\dot{H}^1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

No data was used for the research described in the article.

Notes

  1. \(P^1\) is the one-dimensional Hausdorff measure defined by parabolic cylinders.

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189(2), 101–144 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Barker, T.: About local continuity with respect to \(L^2\) initial data for energy solutions of the Navier-Stokes equations. Math. Ann. 381(3/4), 1373–1415 (2021)

  4. Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, F.-H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des ’equations de Navier–Stokes, s’eminaire equations aux d’eriv’ees partielles de l Ecole polytechnique. Expos’e VII I, 209–216 (1994)

    Google Scholar 

  8. Chemin, J.Y.: About weak-strong uniqueness for the 3D incompressible Navier–Stokes system. Commun. Pure Appl. Math. 64(12), 1587–1598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.Y.: Theoremes d’unicite pour le systeme de Navier–Stokes tridimensionnel. J. D’anal. Math. 77(1), 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chemin, J.Y., Gallagher, I., Paicu, M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. 173(2), 9830–1012 (2011)

  11. Chemin, J.Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362, 2859–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chemin, J.Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \(\mathbb{R} ^3\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chemin, J.Y., Zhang, P.: Remarks on the global solutions of 3-D Navier–Stokes system with one slow variable. Commun. Part. Differ. Equ. 40, 878–896 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheskidov, A., Shvydkoy, R.: Ill-posedness of basic equations of fluid dynamics in Besov spaces. Proc. Am. Math. Soc. 138(3), 1059–1067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Drago, I.G., Planchon, I.F., Planchon, F.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. I. Fourier. 53(5), 1387–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \(R^m\) with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Germain, P.: The second iterate for the Navier–Stokes equation. J. Funct. Anal. 255(9), 2248–2264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Z., Li, J., Yin, Z.: Local well-posedness of the incompressible Euler equations in \(B^1_{\infty ,1}\) and the inviscid limit of the Navier–Stokes equations. J. Funct. Anal. 276(9), 2821–2830 (2016)

    Article  MATH  Google Scholar 

  20. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyzhenskaya, O.A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 7, 155–177 (1968)

    MathSciNet  Google Scholar 

  22. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ukhovskii, M.R., Iudovich, V.I.: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32, 52–61 (1968)

    Article  MathSciNet  Google Scholar 

  24. Wang, B.: Ill-posedness for the Navier–Stokes equations in critical Besov spaces over \(\dot{B}^{-1}_{\infty , q}\). Adv. Math. 268, 350–372 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee and the associated editor for their invaluable comments which helped to improve the paper. This work was partially supported by National Key R &D Program of China (Grant Number 2021YFA1002100) NNSFC [Grant Number 12171493], FDCT (Grant Number 0091/2018/A3), Guangdong Special Support Program (Grant Number 8-2015), and the NSF of Guangdong province (Grant Numbers 2021A1515010296, 2022A1515011798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with, or involvement in, any organization or entity with any financial interest or non-financial interest in the subject matter discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Ye, W. & Yin, Z. The Continuous Dependence for the Navier–Stokes Equations in \(\dot{B}^{\frac{d}{p}-1}_{p,r}\). Results Math 78, 225 (2023). https://doi.org/10.1007/s00025-023-02004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02004-3

Keywords

Mathematics Subject Classification

Navigation