Skip to main content
Log in

Metric Results on Sumsets and Cartesian Products of Classes of Diophantine Sets

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Erdős proved that any real number can be written as a sum, and a product, of two Liouville numbers. Motivated by these results, we study sumsets of classes of real numbers with prescribed (or bounded) irrationality exponents. We show that such sumsets turn out to be large in general, indeed almost every real number with respect to Lebesgue measure can be written as the sum of two numbers with sufficiently large prescribed irrationality exponents. In fact the Hausdorff dimension of the complement is small, and the result remains true if we impose considerably refined conditions on the orders of rational approximation (“exact approximation” with respect to an approximation function). As an application, we show that in many cases the Hausdorff dimension of Cartesian products of sets with prescribed irrationality exponent exceeds the expected dimension, that is the sum of the single Hausdorff dimensions. We also address their packing dimensions. Similar results hold when restricting to classical missing digit Cantor sets, relative to its natural Cantor measure. In particular, we prove that the subset of numbers with prescribed large irrationality exponent has full packing dimension, i.e. the same packing dimension as the entire Cantor set. This complements some results on the Hausdorff dimension of these sets, which is an extensively studied topic in Diophantine approximation. Our proofs are based on ideas of Erdős, but vastly extend them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Akhunzhanov, R.: Vectors of a given Diophantine type II. Mat. Sb. 204(4), 1–22 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Akhunzhanov, R., Moshchevitin, N.: Vectors of a given Diophantine type. Mat. Zam. 80(3), 328–338 (2006) (Russian). English translation Math. Notes 80(3–4), 318–328 (2006)

  3. Alniaçik, K.: On Mahler’s \(U\)-numbers. Am. J. Math. 105(6), 1347–1356 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amou, M., Bugeaud, Y.: Exponents of Diophantine approximation and expansions in integer bases. J. Lond. Math. Soc. 81(2), 297–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besicovitch, A.S., Moran, P.A.P.: The measure of product and cylinder sets. J. Lond. Math. Soc. 20, 110–120 (1945)

    MathSciNet  MATH  Google Scholar 

  6. Bishop, C.J., Peres, Y.: Packing dimension and Cartesian products. Trans. Am. Math. Soc. 348(11), 4433–4445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borosh, I., Fraenkel, I.A.S.: A generalization of Jarník’s theorem on Diophantine approximations. Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34, 193–201 (1972)

  8. Bugeaud, Y.: Sets of exact approximation order by rational numbers. Math. Ann. 327(1), 171–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bugeaud, Y.: Diophantine approximation and Cantor sets. Math. Ann. 341(3), 677–684 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bugeaud, Y., Dodson, M.M., Kristensen, S.: Zero-infinity laws in Diophantine approximation. Q. J. Math. 56(3), 311–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bugeaud, Y., Durand, A.: Metric Diophantine approximation on the middle-third Cantor set. J. Eur. Math. Soc. (JEMS) 18(6), 1233–1272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burger, E.B.: On Liouville decompositions in local fields. Proc. Am. Math. Soc. 124(11), 3305–3310 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burger, E.B.: Diophantine inequalities and irrationality measures for certain transcendental numbers. Indian J. Pure Appl. Math. 32(10), 1591–1599 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Chalebgwa, T.P., Morris, S.A.: Erdős–Liouville sets. Bull. Aust. Math. Soc. 107(2), 284–289 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chalebgwa, T.P., Morris, S.A.: Measures of sets of transcendental numbers and the Erdős property. Submitted

  16. Das, T., Fishman, L., Simmons, D., Urbański, M.: A variational principle in the parametric geometry of numbers. arXiv:1901.06602

  17. Eggleston, H.G.: A correction to a paper on the dimension of cartesian product sets. Proc. Camb. Philos. Soc. 49, 437–440 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdős, P.: Representations of real numbers as sums and products of Liouville numbers. Mich. Math. J. 9, 59–60 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Falconer, K.: Fractal geometry. In: Mathematical Foundations and Applications. Wiley, Chichester (1990)

  20. Hussain, M., Schleischitz, J., Simmons, D.: The generalised Baker–Schmidt problem on hypersurfaces. Int. Math. Res. Not. IMRN 12, 8845–8867 (2021)

    Article  MATH  Google Scholar 

  21. Jarník, V.: Über die simultanen diophantischen Approximationen. Math. Z. 33, 505–543 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koivusalo, H., Levesley, J., Ward, B., Zhang, X.: The dimension of the set of \(\Psi \)-badly approximable points in all ambient dimensions; on a question of Beresnevich and Velani. In preparation

  23. Larman, D.G.: On Hausdorff measure in finite-dimensional compact metric spaces. Proc. Lond. Math. Soc. 17(3), 193–206 (1967)

  24. Levesley, J., Salp, C., Velani, S.L.: On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338(1), 97–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marnat, A.: Hausdorff and packing dimension of Diophantine sets. arXiv:1904.08416

  26. Marstrand, J.M.: The dimension of Cartesian product sets. Proc. Camb. Philos. Soc. 50, 198–202 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olsen, L., Renfro, D.L.: On the exact Hausdorff dimension of the set of Liouville numbers II. Manuscr. Math. 119(2), 217–224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oxtoby, J.: Measure and category. In: A Survey of the Analogies Between Topological and Measure Spaces. Graduate Texts in Mathematics, vol. 2, 2edn. Springer, New York (1980)

  29. Perron, O.: Die Lehre von den Kettenbrüchen. B.G. Teubner (1913)

  30. Petruska, G.: On strong Liouville numbers. Indag. Math. (N.S.) 3, 211–218 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rieger, G.J.: Über die Lösbarkeit von Gleichungssystemen durch Liouville-Zahlen. (German) Arch. Math. (Basel) 26, 40–43 (1975)

  32. Schleischitz, J.: Generalizations of a result of Jarník on simultaneous approximation. Mosc. J. Comb. Number Theory 6(2–3), 253–287 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Schleischitz, J.: Rational approximation to surfaces defined by polynomials in one variable. Acta Math. Hungar. 155(2), 362–375 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Senthil Kumar, K., Thangadurai, R., Waldschmidt, M.: Liouville numbers and Schanuel’s Conjecture. Arch. Math. (Basel) 102(1), 59–70 (2014)

  35. Schwarz, W.: Liouville–Zahlen und der Satz von Baire. Math. Phys. Semesterber. 24(1), 84–87 (1977) (German)

  36. Tricot, C., Jr.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91(1), 57–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wegmann, H.: Die Hausdorff-Dimension von kartesischen Produktmengen in metrischen Räumen. J. Reine Angew. Math. 234, 163–171 (1969)

    MathSciNet  MATH  Google Scholar 

  38. Weiss, B.: Almost no points on a Cantor set are very well approximable. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2008), 949–952 (2001)

  39. Xiao, Y.: Packing dimension, Hausdorff dimension and Cartesian product sets. Math. Proc. Camb. Philos. Soc. 120(3), 535–546 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu, H.: Rational points near self-similar sets. arXiv:2101.05910

Download references

Acknowledgements

The author thanks the referee for the careful reading. I am further thankful to Sidney A. Morris for bringing to my attention his joint paper with Chalebgwa on Erdos-Liouville sets.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schleischitz.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleischitz, J. Metric Results on Sumsets and Cartesian Products of Classes of Diophantine Sets. Results Math 78, 215 (2023). https://doi.org/10.1007/s00025-023-02000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02000-7

Keywords

Mathematics Subject Classification

Navigation