Skip to main content
Log in

A Complete Characterization of the Generalized Multilinear Sobolev Inequality in Grand Product Lebesgue Spaces Defined on Non-homogeneous Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Necessary and sufficient condition governing the boundedness of the multilinear fractional integral operator \(T_{\gamma , \mu }(\textbf{f})(x)= \int \nolimits _{X^m} \frac{ f_1(y_1) \dots f(y_m)}{\big (\rho (x, y_1)+ \cdots + \rho (x, y_m) \big )^{m-\gamma }}\, d\mu (\textbf{y}) \) defined with respect to a measure \(\mu \) from grand product space \(\prod _{j=1}^m {\mathcal {L}}^{p_j), \theta }(X, \mu )\) to grand Lebesgue space \(L^{q),\theta q/p} (X, \mu )\) is established, where \((X, \rho , \mu )\) is a quasi-metric measure space, \(\frac{1}{p}= \sum _{j=1}^m \frac{1}{p_j}\), \(p<q\) and \(\theta >0\). In particular, we show that for that boundedness, the necessary and sufficient condition on \(\mu \) is that it is upper Ahlfors \(\beta _m\)—regular for certain number \(\beta _m\). To establish this result, first we derive the boundedness of \(T_{\gamma , \mu }\) between more general grand spaces: \(T_{\gamma , \mu }: \prod _{j=1}^m {\mathcal {L}}^{p_j), \Psi (\cdot )}(X, \mu )\mapsto L^{q), \Phi (\cdot )}(X, \mu )\). As a corollary, we have a complete characterization of the multilinear Sobolev inequality (i.e., when q is the Sobolev exponent of p) in these spaces. In this case criterion on \(\mu \) is that it is upper Ahlfors 1– regular. Some weighted inequalities for the bilinear fractional integral operator \(B_{\gamma }(f,g)(x) = \int \nolimits _{ {\mathbb {R}}^n} \frac{f(x-t)g(x+t) dt}{|t|^{n-\gamma } }\), \(0<\gamma <n\), in the classical Lebesgue spaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  2. Capone, C., Fiorenza, A.: On small Lebesgue spaces. J. Funct. Spaces Appl. 3, 73–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51(2), 131–148 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Garcia-Cuerva, J., Gatto, A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162, 245–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grafakos, L.: On multilinear fractional integrals. Studia Math. 102, 49–56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  7. Grafakos, L., Kalton, N.: Some remarks on multilinear maps and interpolation. Math. Ann. 319(1), 151–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grafakos, L., Liu, L., Maldonado, D., Yang, D.: Multilinear analysis on metric spaces. Diss. Math. (Rozprawy Mat.) 497, 121 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Greco, L., Iwaniec, T., Sbordone, C.: Inverting the \(p\)-harmonic operator. Manuscripta Math. 92(2), 249–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119(2), 129–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett. 6(1), 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kokilashvili, V.: Weighted estimates for classical integral operators, In: Nonlinear analysis, function spaces and applications, vol. \(4\) (Roudnice nad Labem, 1990), volume 119 of Teubner-Texte Math., Teubner, Leipzig, pp. 86–103 (1990)

  13. Kokilashvili, V., Mastyło, M., Meskhi, A.: On the boundedness of the multilinear fractional integral operators. Nonlinear Anal. 94, 142–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kokilashvili, V., Mastyło, M., Meskhi, A.: Multilinear integral operators in weighted grand Lebesgue spaces. Frac. Calc. Appl. Anal. 19(3), 691–724 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Kokilashvili, V., Mastyło, M., Meskhi, A.: On the boundedness of multilinear fractional integral operators. J. Geom. Anal. 30, 667–679 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kokilashvili, V., Meskhi, A.: Fractional integrals on measure spaces. Fract. Calc. Appl. Anal. 4(1), 1–24 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Kokilashvili, V., Meskhi, A.: Fractional integrals with measure in grand Lebesgue and Morrey spaces. Int. Transf. Spec. Funct. (2020). https://doi.org/10.1080/10652469.2020.1833003

    Article  MATH  Google Scholar 

  18. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces, vol. 2. Birkäuser/Springer, Heidelberg (2016)

    MATH  Google Scholar 

  19. Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math. 220(4), 1222–1264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maz’ya, V.: Sobolev Spaces. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  21. Meskhi, A.: Criteria for the boundedness of potential operators in grand Lebesgue spaces. Proc. A. Razmadze Math. Inst. 169, 119–132 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60, 213–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tolsa, X.: Cotlar’s inequality without the doubling condition and existence of principal values for the Cauchy integral of measures. J. Reine Angew. Math. 502, 199–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for helpful remarks.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Meskhi.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose. Contribution of both authors to obtain the results of the paper are equal. The first draft was prepared by both authors. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokilashvili, V., Meskhi, A. A Complete Characterization of the Generalized Multilinear Sobolev Inequality in Grand Product Lebesgue Spaces Defined on Non-homogeneous Spaces. Results Math 78, 181 (2023). https://doi.org/10.1007/s00025-023-01959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01959-7

Keywords

Mathematics Subject Classification

Navigation