Skip to main content
Log in

Sobolev’s Inequality for Musielak–Orlicz–Sobolev Functions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Our aim in this paper is to deal with Sobolev’s inequality for Musielak–Orlicz–Sobolev functions in \(W_0^{1, \Phi }(\textbf{R}^N)\). As an application we discuss double phase functionals \(\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}\) with variable exponents. Here p and q are variable exponents satisfying natural continuity conditions. Also the case when p attains the value 1 in some parts of the domain is included in the results. For this purpose we first study weak type inequality for variable Riesz potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adams, R. A., Fournier, J. J. F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam. xiv+305 pp (2003)

  2. Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces. J. Funct. Anal. 275(9), 2538–2571 (2018)

    MATH  MathSciNet  Google Scholar 

  3. Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15, 195–208 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Almeida, A., Samko, S.: Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwendungen 26(2), 179–193 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Diff. Equ. 57(2), 62 (2018)

    MATH  MathSciNet  Google Scholar 

  6. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St Petersburg Math. J. 27, 347–379 (2016)

    MATH  MathSciNet  Google Scholar 

  7. Byun, S.S., Liang, S., Zheng, S.: Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles. Proc. Amer. Math. Soc. 147, 3839–3854 (2019)

    MATH  MathSciNet  Google Scholar 

  8. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Rat. Mech. Anal. 215, 443–496 (2015)

    MATH  MathSciNet  Google Scholar 

  9. Colombo, M., Mingione, G.: Bounded minimizers of double phase variational integrals. Arch. Rat. Mech. Anal. 218, 219–273 (2015)

    MATH  Google Scholar 

  10. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)

    MATH  Google Scholar 

  11. Diening, L.: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\). Math. Nachr. 263(1), 31–43 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Diening, L., Harjulehto, P., Hästö, P., R\(\stackrel{\circ }{\rm u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents Lecture Notes in Mathematics. Springer, Heidelberg (2011)

  13. Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. Studia Math. 143(3), 267–293 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Edmunds, D., Rákosník, J.: Sobolev embeddings with variable exponent. II. Math. Nachr. 246(247), 53–67 (2002)

    MATH  MathSciNet  Google Scholar 

  15. De Filippis, C., Mingione, G.: Manifold constrained non-uniformly elliptic problems. J. Geom. Anal. 30(2), 1661–1723 (2020)

    MATH  MathSciNet  Google Scholar 

  16. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31, 495–522 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr. 279(13–14), 1463–1473 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Guliyev, V.S., Hasanov, J., Samko, S.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107, 285–304 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Guliyev, V.S., Hasanov, J., Samko, S.: Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent Morrey type spaces. J. Math. Sci. 170(4), 423–443 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Harjulehto, P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125–136 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Harjulehto, P., Hästö, P.: Sobolev inequalities for variable exponents attaining the values \(1\) and \(n\). Publ. Mat. 52, 347–363 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Mathematics, vol. 2236. Springer, Cham (2019)

  23. Harjulehto, P., Hästö, P.: A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Comput. 17, 129–146 (2004)

    MATH  Google Scholar 

  24. Hästö, P.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263–278 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269, no. 12, 4038–4048 (2015); Corrigendum to ” The maximal operator on generalized Orlicz spaces ”, J. Funct. Anal. 271, no. 1, 240–243 (2016)

  26. Hästö, P., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Orlicz spaces of two variable exponents. Glasgow Math. J. 52, 227–240 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Hästö, P., Ok, J.: Maximal regularity for local minimizers of non-autonomous functionals. J. Eur. Math. Soc. 24, 1285–1334 (2022)

  28. Kokilashvili, V., Samko, S.: On Sobolev theorem for Riesz type potentials in the Lebesgue spaces with variable exponent. Z. Anal. Anwendungen 22(4), 899–910 (2003)

    MATH  MathSciNet  Google Scholar 

  29. Kurata, K., Shioji, N.: Compact embedding from \(W^{1,2}_0(\Omega )\) to \(L^{q(x)}(\Omega )\) and its application to nonlinear elliptic boundary value problem with variable critical exponent. J. Math. Anal. Appl. 339(2), 1386–1394 (2008)

    MATH  MathSciNet  Google Scholar 

  30. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)

    MATH  MathSciNet  Google Scholar 

  31. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequality for double phase functionals with variable exponents. Forum Math. 31, 517–527 (2019)

    MATH  MathSciNet  Google Scholar 

  32. Maeda, F.Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger’s inequality for double phase functionals with variable exponents. Czechoslovak Math. J. 71, 511–528 (2021)

    MATH  MathSciNet  Google Scholar 

  33. Maeda, F.Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operator, Hardy operator and Sobolev’s inequalities on non-homogeneous central Herz–Morrey–Musielak–Orlicz spaces. Hiroshima Math. J. 51, 13–55 (2021)

    MATH  MathSciNet  Google Scholar 

  34. Maeda, F.Y., Mizuta, Y., Shimomura, T.: Growth properties of Musielak–Orlicz integral means for Riesz potentials. Nonlinear Anal. 112, 69–83 (2015)

    MATH  MathSciNet  Google Scholar 

  35. Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of maximal operator on Musielak–Orlicz–Morrey spaces. Tohoku Math. J. 69, 483–495 (2017)

    MATH  MathSciNet  Google Scholar 

  36. Mizuta, Y.: Potential Theory in Euclidean Spaces. Gakk\(\overline{\rm o}\)tosho, Tokyo (1996)

  37. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent. Complex Vari. Ellipt. Equ. 56(7–9), 671–695 (2011)

    MATH  MathSciNet  Google Scholar 

  38. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak–Orlicz–Morrey spaces of variable exponent in \(\textbf{R}^{n}\). Rev. Mat. Comput. 25(2), 413–434 (2012)

    MATH  MathSciNet  Google Scholar 

  39. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\cdot )}(\log L)^{q(\cdot )}\). J. Math. Anal. Appl. 345, 70–85 (2008)

    MATH  MathSciNet  Google Scholar 

  40. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Musielak–Orlicz spaces. Manuscripta Math. 155, 209–227 (2018)

    MATH  MathSciNet  Google Scholar 

  41. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s theorem for double phase functionals. Math. Ineq. Appl. 23, 17–33 (2020)

    MATH  MathSciNet  Google Scholar 

  42. Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of fractional maximal operators for double phase functionals with variable exponents. J. Math. Anal. Appl. 501, 124360 (2021)

  43. Mizuta, Y., Ohno, T., Shimomura, T.: Herz–Morrey spaces on the unit ball with variable exponent approaching \(1\) and double phase functionals. Nagoya Math. J. 242, 1–34 (2021)

    MATH  MathSciNet  Google Scholar 

  44. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics (vol 1034), Springer-Verlag (1983)

  45. Ok, J.: Gradient estimates for elliptic equations with \(L^{p(\cdot )} \log L\) growth. Calc. Var. Partial Diff. Equ. 55(2), 1–30 (2016)

    MathSciNet  Google Scholar 

  46. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    MATH  MathSciNet  Google Scholar 

  47. Samko, N., Samko, S., Vakulov, B.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335, 560–583 (2007)

    MATH  MathSciNet  Google Scholar 

  48. Samko, S., Shargorodsky, E., Vakulov, B.: Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. II. J. Math. Anal. Appl. 325(1), 745–751 (2007)

    MATH  MathSciNet  Google Scholar 

  49. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

    MathSciNet  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Takao Ohno.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuta, Y., Ohno, T. & Shimomura, T. Sobolev’s Inequality for Musielak–Orlicz–Sobolev Functions. Results Math 78, 90 (2023). https://doi.org/10.1007/s00025-023-01858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01858-x

Keywords

Mathematics Subject Classification

Navigation