Skip to main content
Log in

De Rham Decomposition Theorem for Strongly Convex Kähler–Berwald Manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove that the unit ball \(B_n\subset \mathbb {C}^n\) admits no \(\text{ Aut }(B_n)\)-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the canonical Poincaré–Bergman metric, while the unit polydisk \(P_n\subset \mathbb {C}^n(n\ge 2)\) admits infinite many \(\text{ Aut }(P_n)\)-invariant strongly convex complex Finsler metrics other than the Bergman metric. The \(\text{ Aut }(P_n)\)-invariant strongly pseudoconvex complex Finsler metrics (which are not necessary Hermitian quadratic) are explicitly constructed and are proved to be strongly convex Kähler–Berwald metrics. We also investigate the existence of holomorphic invariant strongly pseudoconvex non-Hermitian quadratic complex Finsler metrics on reducible complex manifolds, and give a de Rham decomposition theorem for strongly convex Kähler–Berwald manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  1. Abate, M., Aikou, T., Patrizio, G.: Preface for COMPLEX FINSLER GEOMETRY, Finsler Geometry: Joint Summer Research Conference on Finsler Geometry July 16–20, Seattle, Washington (1995). In: Bao B., Chern S. S., Shen Z. (eds.) Contemporary Mathematics, 196, 97–100 (1996)

  2. Abate, M., Patrizio, G.: Finsler Metrics: A Global Approach with Applications to Geometric Function Theory. Lecture Notes in Mathematics, vol. 1591. Springer, Berlin (1994)

  3. Aikou, T.: On complex Finsler manifolds. Rep. Fac. Sci, Kogoshima Univ. (Math., Phys. & Chem.). 24, 9–25 (1991)

  4. Aikou, T.: Complex manifolds modeled on a complex Minkowski space. J. Math. Kyoto Univ. (JMKYAZ) 35(1), 85–103 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann–Finsler Geometry, GTM 200. Springer, New York (2000)

    Book  MATH  Google Scholar 

  6. Cartan, H.: Sur les fonctions de \(n\) variables complexes: Les transformations du produit topologique de deux domaines bornés. Bull. Soc. Math. France. 64, 37–48 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, B., Shen, Y.: Kähler Finsler metrics are actually strongly Kähler. Chin. Ann. Math. 30B(2), 173–178 (2009)

    Article  MATH  Google Scholar 

  8. Chern, S.S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices Am. Math. Soc. 43(9), 959–963 (1996)

    MathSciNet  MATH  Google Scholar 

  9. De Rham, G.: Sur la réductibilité d’un espace de Riemann. Commun. Math. Helv. 26, 328–344 (1952)

  10. Deng, S.: Homogeneous Finsler Spaces. Springer, New York (2012)

  11. Deng, Y.: The construction of Berwald metrics and strongly Kähler–Finsler metrics on product complex manifolds. Adv. Math. (in Chinese) 41(6), 723–731 (2012)

    MATH  Google Scholar 

  12. Hano, J.: On affine transformations of a Riemannian manifold. Nagoya Math. J. 9, 99–109 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hano, J., Matsushima, Y.: Some studies of Kaehlerian homogeneous spaces. Nagoya Math. J. 11, 77–92 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helgason S.: Differential Geometry, Lie group, and Symmetric Spaces. Pure and Applied Mathematics. Academic, New York 80 (1978)

  15. Hundemer, A.: A characterization of products of balls by their isotropy groups. Math. Ann. 313, 585–607 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Isaev, A.: Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds. Springer, Berlin (2007)

    MATH  Google Scholar 

  17. Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3, 43–70 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, volume I, II. Wiley (1963)

  19. Kobayasi, S.: Hyperbolic Manifolds and Holomorphic Mappings. Marcel Dekker, New York (1970)

    Google Scholar 

  20. Kodama A.: A remark on bounded Reinhardt domains. Proc. Jpn. Acad. 54, Ser. A, 179–182 (1978)

  21. Kodama, A., Shimizu, S.: An intrinsic characterization of the direct product of balls. J. Math. Kyoto Univ. (JMKYAZ) 49(3), 619–630 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr. 109, 427–474 (1981)

    Article  MATH  Google Scholar 

  23. Look, K. H.: Schwarz Lemma and Analytic Invariants. Sci. Sinica, vol. VII. 5, 453–504 (1958)

  24. Look, K.H.: Schwarz lemma in the theory of functions of several complex variables. Sci. Sinica (in Chinese) 7(3), 370–420 (1957)

    MathSciNet  MATH  Google Scholar 

  25. Narasimhan, R.: Several Complex Variables. Chicago Lectures in Mathematics. The University of Chicago (1970)

  26. Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Springer, Dordrecht (2001)

  27. Sibony, N.: Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979), pp. 357–372, Ann. of Math. Stud. Princeton Univ. Press, Princeton, NJ 100 (1981)

  28. Szabó Z. I.: Positive definite Berwald spaces. Tensor, N. S. 35, 25–39 (1981)

  29. Xia, H., Zhong, C.: A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature. Differ. Geom. Appl. 43, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xia, H., Zhong, C.: On strongly convex weakly Kähler–Finsler metric of constant flag curvature. J. Math. Anal. Appl. 443, 891–912 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhong, C.: On real and complex Berwald connections associated to strongly convex weakly Kähler–Finsler metrics. Differ. Geom. Appl. 29, 388–408 (2011)

    Article  MATH  Google Scholar 

  32. Zhong, C.: On unitary invariant strongly pseudoconvex complex Finsler metrics. Differ. Geom. Appl. 40, 159–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball, GTM 226. Springer, Berlin (2005)

Download references

Acknowledgements

The author would like to express his sincere thanks to the referees for their valuable suggestions and comments.

Funding

The author is supported by the National Natural Science Foundation of China (Grant Number 12071386 and 11671330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Zhong.

Ethics declarations

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C. De Rham Decomposition Theorem for Strongly Convex Kähler–Berwald Manifolds. Results Math 78, 25 (2023). https://doi.org/10.1007/s00025-022-01797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01797-z

Keywords

Mathematics Subject Classification

Navigation