Skip to main content
Log in

Time-Scale Localization Operators in the Weinstein Setting

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Daubechies first used localization operators as a mathematical tool to localized a signal in the time frequency plane. They have been a subject of research in many domains ever since. In this paper, we introduce the notion of Weinstein two-wavelet and we define the two-wavelet localization operators in the setting of the Weinstein theory. Then, we give a host of sufficient conditions for the boundedness and compactness of the two-wavelet localization operator on \(L^{p}_{\alpha }(\mathbb {R}^{d+1}_+)\) for all \(1\le p\le \infty \), in terms of properties of the symbol \(\sigma \) and the functions \(\varphi \) and \(\psi \). In the end, we study some typical examples of the Weinstein two-wavelet localization operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Balazs, P.: Hilbert-Schmidt operators and frames—classification, best approximation by multipliers and algorithms. Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 315–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balazs, P., Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A: Math. Theor. 45(24), 20 (2012). (Id/No 244023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Nahia, Z., Ben Salem, N.: Spherical harmonics and applications associated with the Weinstein operator. In: Potential theory—ICPT ’94. Proceedings of the International Conference, Kouty, Czech Republic

  4. Ben Nahia, Z., Ben Salem, N.: On a mean value property associated with the Weinstein operator. In: Potential Theory—ICPT ’94. Proceedings of the International Conference, Kouty, Czech Republic, 13–20 Aug 1994, pp. 243–253. de Gruyter, Berlin (1996)

  5. Ben Salem, N., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integral Transforms Spec. Funct. 26(9), 700–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Salem, N., Nasr, A.R.: Shapiro type inequalities for the Weinstein and the Weinstein–Gabor transforms. Konuralp J. Math. 5(1), 68–76 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press Inc., Boston, MA (1988)

    MATH  Google Scholar 

  8. Bony, J.-M.: Calcul symbolique et propagation des singularites pour les équations aux dérivées partielles non linéaires (Symbolic calculus and propagation of singularities for nonlinear partial differential equations). Ann. Sci. Ec. Norm. Super. 14, 209–246 (1981)

    Article  MATH  Google Scholar 

  9. Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Séminaire de Théorie du Potentiel Paris, No. 3, pp. 18–38. Springer (1978)

  10. Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Mathematics, vol. 61. SIAM, Philadelphia, PA (1992)

    Google Scholar 

  15. Daubechies, I., Paul, T.: Time-frequency localisation operators—a geometric phase space approach: II. The use of dilations. Inverse Probl. 4(3), 661–680 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Mari, F., Feichtinger, H.G., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. II. Ser. 65(3), 720–732 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton, NJ (1995)

    MATH  Google Scholar 

  18. Gasmi, A., Mohamed, H.B., Bettaibi, N.: Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 24(1), 289–307 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23(1), 85–102 (1984)

    Article  Google Scholar 

  20. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston, MA (2001)

    Book  MATH  Google Scholar 

  21. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holschneider, M.: Wavelets. An analysis tool. (1995)

  23. Koornwinder, T.H.: The continuous wavelet transform. In: Wavelets: An Elementary Treatment of Theory and Applications, pp. 27–48. World Scientific (1993)

  24. Mehrez, K.: Paley–Wiener theorem for the Weinstein transform and applications. Integral Transforms Spec. Funct. 28(8), 616–628 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mejjaoli, H.: Dunkl two-wavelet theory and localization operators. J. Pseudo-Differ. Oper. Appl. 8(3), 349–387 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mejjaoli, H., Salem, A. Ould Ahmed.: New results on the continuous Weinstein wavelet transform. J. Inequal. Appl. 2017, 25 (2017). (Id/No 270)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czech. Math. J. 61(4), 941–974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mejjaoli, H., Trimèche, K.: Time-frequency concentration, Heisenberg type uncertainty principles and localization operators for the continuous Dunkl wavelet transform on \({\mathbb{R} }^{d}\). Mediterr. J. Math. 14(4), 33 (2017). (Id/No 146)

    Article  MATH  Google Scholar 

  29. Meyer, Y.: Wavelets and Operators, vol. 1. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  30. Nahia, Z.B.: Fonctions harmoniques et proprietés de la moyenne associéesa l’opérateur de Weinstein, Thèse \(3^{\text{eme}}\) cycle Maths. Department of Mathematics Faculty of Sciences of Tunis, Tunisia (1995)

  31. Salem, N.B.: Hardy–Littlewood–Sobolev type inequalities associated with the Weinstein operator. Integral Transforms Spec. Funct. 31(1), 18–35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Salem, N.B., Nasr, A.R.: Littlewood–Paley \(g\)-function associated with the Weinstein operator. Integral Transforms Spec. Funct. 27(11), 846–865 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saoudi, A.: On the Weinstein–Wigner transform and Weinstein–Weyl transform. J. Pseudo-Differ. Oper. Appl. 11(1), 1–14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saoudi, A.: A variation of \(L^p\) uncertainty principles in Weinstein setting. Indian J. Pure Appl. Math. 51(4), 1697–1712 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saoudi, A.: Calderón’s reproducing formulas for the Weinstein \(L^2\)-multiplier operators. Asian–Eur. J. Math. 14(1), 16 (2021). (Id/No 2150003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saoudi, A.: Two-wavelet theory in Weinstein setting. Int. J. Wavelets Multiresolut. Inf. Process. (2022). https://doi.org/10.1142/S0219691322500205

  37. Saoudi, A., Kallel, I.A.: \(L^2\)-uncertainty principle for the Weinstein-multiplier operators. Int. J. Anal. Appl. 17(1), 64–75 (2019)

    MATH  Google Scholar 

  38. Saoudi, A., Nefzi, B.: Boundedness and compactness of localization operators for Weinstein–Wigner transform. J. Pseudo-Differ. Oper. Appl. 11(2), 675–702 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. X, p. 297. Princeton University Press, Princeton, NJ (1971)

    Google Scholar 

  40. Weinstein, A.: Singular partial differential equations and their applications. In: Proceeding of Symposium in Fluid Dynamics and Applied Mathematics Maryland, vol. 67, pp. 29–49 (1962)

  41. Wong, M.: Localization operators on the affine group and paracommutators. In: Progress in Analysis: (In 2 Volumes), pp. 663–669. World Scientific (2003)

  42. Wong, M.-W.: Wavelet Transforms and Localization Operators, vol. 136. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  43. Wong, M.W., Boggiatto, P.: Two-wavelet localization operators on \(L^p(\mathbb{R} ^n)\) for the Weyl–Heisenberg group. Integral Equ. Oper. Theory 49(1), 1–10 (2004)

    Article  MATH  Google Scholar 

  44. Zolfaghari, M., Golabi, M.R.: Modeling and predicting the electricity production in hydropower using conjunction of wavelet transform, long short-term memory and random forest models. Renew. Energy 170, 1367–1381 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article. The author extend him appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “IF-2020-NBU-420”.

Funding

This research was funded by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number “IF-2020-NBU-420”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saoudi.

Ethics declarations

Competing Interests

The author has not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saoudi, A. Time-Scale Localization Operators in the Weinstein Setting. Results Math 78, 14 (2023). https://doi.org/10.1007/s00025-022-01792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01792-4

Keywords

Mathematics Subject Classification

Navigation