Skip to main content
Log in

Einstein Hypersurfaces of Warped Product Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider Einstein hypersurfaces of warped products \(I\times _\omega {\mathbb {Q}}_\epsilon ^n,\) where \(I\subset {\mathbb {R}}\) is an open interval and \({\mathbb {Q}}_\epsilon ^n\) is the simply connected space form of dimension \(n\ge 2\) and constant sectional curvature \(\epsilon \in \{-1,0,1\}\). We show that, for all \(c\in {\mathbb {R}}\) (resp. \(c>0\)), there exist rotational hypersurfaces of constant sectional curvature c in \(I\times _\omega {\mathbb {H}}^n\) and \(I\times _\omega {\mathbb {R}}^n\) (resp. \(I\times _\omega {\mathbb {S}}^n\)), provided that \(\omega \) is nonconstant. We also show that the gradient T of the height function of any Einstein hypersurface of \(I\times _\omega \mathbb {Q} _\epsilon ^n\) (if nonzero) is one of its principal directions. Then, we consider a particular type of Einstein hypersurface of \(I\times _\omega {\mathbb {Q}}_\epsilon ^n\) with non vanishing T—which we call ideal—and prove that, for \(n>3,\) such a hypersurface \(\Sigma \) has either precisely two or precisely three distinct principal curvatures everywhere. We show that, in the latter case, there exist such a \(\Sigma \) for certain warping functions \(\omega ,\) whereas in the former case \(\Sigma \) is necessarily of constant sectional curvature and rotational, regardless the warping function \(\omega .\) We also characterize ideal Einstein hypersurfaces of \(I\times _\omega {\mathbb {Q}}_\epsilon ^n\) with no vanishing angle function as local graphs on families of isoparametric hypersurfaces of \({\mathbb {Q}}_\epsilon ^n.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borges, V., Da Silva, A.: On Einstein hypersurfaces of \(I\times _f \mathbb{Q}^n(c)\). J. Geom. Phys. 173, Paper No. 104448, 12 pp (2022)

  3. Cecil, T.E.: Isoparametric and Dupin hypersurfaces. SIGMA Symmetry Integrability Geom. Methods Appl. 4, Paper 062, 28 pp (2008)

  4. Dajczer, M., Tojeiro, R.: Submanifold Theory (Beyond an Introduction). Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  5. Dillen, F., Fastenakels, J., Van der Veken, J.: Rotation hypersurfaces in \(\mathbb{S}^{n}\times \mathbb{R}\) and \(\mathbb{H}^{n}\times \mathbb{R}\). Note Mat. 29, 41–54 (2009)

    MathSciNet  Google Scholar 

  6. de Lima, R.F., Roitman, P.: Helicoids and catenoids in \(M\times \mathbb{R}\). Ann. Mat. Pura Appl. 200, 2385–2421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Domínguez-Vázquez, M.: An introduction to isoparametric foliations. Preprint (2018). http://xtsunxet.usc.es/miguel/teaching/jae2018.html

  8. Ince, E.: Ordinary Differential Equations. Dover, New York (1978)

    Google Scholar 

  9. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1963)

    MATH  Google Scholar 

  10. Lawn, M.-A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leandro, B., Pina, R., dos Santos, J.P.: Einstein hypersurfaces of \(\mathbb{S}^{n}\times \mathbb{R} \) and \(\mathbb{H}^{n}\times \mathbb{R}\). Bull. Braz. Math. Soc. New Ser. 52, 537–546 (2021)

    Article  Google Scholar 

  12. Manfio, F., Tojeiro, R.: Hypersurfaces with constant sectional curvature of \(\mathbb{S}^{n}\times \mathbb{R}\) and \(\mathbb{H}^{n}\times \mathbb{R}\). Ill. J. Math. 55, 397–415 (2011)

    MATH  Google Scholar 

  13. Manfio, F., Tojeiro, R., Van der Veken, J.: Geometry of submanifolds with respect to ambient vector fields. Ann. Mat. Pura Appl. 199, 2197–2225 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ryan, P.J.: Homogeneity and some curvature conditions for hypersurfaces. Tohoku Math. J. 21, 363–388 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tojeiro, R.: On a class of hypersurfaces in \(\mathbb{S} ^n\times \mathbb{R} \) and \(\mathbb{H} ^n\times \mathbb{R} \). Bull. Braz. Math. Soc. 41, 199–209 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Fernando Manfio is supported by Fapesp, Grant 2016/23746-6. João Paulo dos Santos is supported by FAPDF, Grant 0193.001346/2016.

Author information

Authors and Affiliations

Authors

Contributions

R. F. de Lima, F. Manfio, and J. P. dos Santos Ab contributed equally to the study, conception, and design of the manuscript. R. F. de Lima, F. Manfio, and J. P. dos Santos Ab read and approved the final manuscript.

Corresponding author

Correspondence to R. F. de Lima.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R.F.d., Manfio, F. & Santos, J.P.d. Einstein Hypersurfaces of Warped Product Spaces. Results Math 77, 228 (2022). https://doi.org/10.1007/s00025-022-01758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01758-6

Keywords

Mathematics Subject Classification

Navigation