Skip to main content
Log in

Centralizers of Lie Structure of Triangular Algebras

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \( {\mathcal {T}} = Tri ({\mathcal {A}},{\mathcal {M}},{\mathcal {B}} ) \) be a triangular algebra where \( {\mathcal {A}} \) is a unital algebra, \( {\mathcal {B}} \) is an algebra which is not necessarily unital, and \( {\mathcal {M}} \) is a faithful (\( {\mathcal {A}} \), \( {\mathcal {B}} \))-bimodule which is unital as a left \( {\mathcal {A}} \)-module. In this paper, under some mild conditions on \( {\mathcal {T}}\), we show that if \( \phi : {\mathcal {T}} \rightarrow {\mathcal {T}} \) is a linear map satisfying

$$\begin{aligned} A,B \in {\mathcal {T}}, ~~ AB= P \Longrightarrow \phi ( [A,B])=[A,\phi (B) ]=[\phi (A) , B], \end{aligned}$$

where P is the standard idempotent of \({\mathcal {T}}\), then \( \phi = \psi +\gamma \) where \( \psi :{\mathcal {T}} \rightarrow {\mathcal {T}}\) is a centralizer and \( \gamma :{\mathcal {T}}\rightarrow Z( {\mathcal {T}}) \) is a linear map vanishing at commutators [AB] with \( AB=P \) whrere \( Z( {\mathcal {T}}) \) is the center of \( {\mathcal {T}}\). Applying our result, we characterize linear maps on \({\mathcal {T}}\) that behave like generalized Lie 2-derivations at idempotent products as an application of above result. Our results are applied to upper triangular matrix algebras and nest algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barari, A., Fadaee, B., Ghahramani, H.: Linear maps on standard operator algebras characterized by action on zero products. Bull. Iran. Math. Soc. 45, 1573–1583 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behfar, Ronak, Ghahramani, Hoger: Lie maps on triangular algebras without assuming unity. Mediterr. J. Math. 18(5), 215–242 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benkovič, D.: Generalized Lie n-derivations of triangular algebras. Commun. Algebra 47, 5294–5302 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brešar, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Am. Math. Soc. 335, 525–546 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156, 385–394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheung, W.-S.: Lie derivations of triangular algebras. Linear Multilinear Algebra 51, 299–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davision, K.R.: Nest Algebras, Pitman Research Notes in Mathematics Series, vol. 191. Longman Scientific and Technical, Burnt Mill Harlow, Essex (1988)

    Google Scholar 

  8. Du, Y., Wang, Y.: Lie derivations of generalized matrix algebras. Linear Algebra Appl. 437, 2719–2726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fadaee, B., Ghahramani, H.: Lie centralizers at the zero products on generalized matrix algebras. J. Algebra Appl. (2021). https://doi.org/10.1142/S0219498822501651

    Article  MATH  Google Scholar 

  10. Fadaee, B., Ghahramani, H.: Linear maps on \(C^*\)-algebras behaving like (anti-)derivations at orthogonal elements. Bull. Malays. Math. Sci. Soc. 43, 2851–2859 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fadaee, B., Fallahi, K., Ghahramani, H.: Characterization of linear mappings on (Banach) \(*\)-algebras by similar properties to derivations. Math. Slovaca 70, 1003–1011 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fadaee, B., Ghahramani, H., Jing, W.: Lie triple centralizers on generalized matrix algebras. Quaest. Math. (2022). https://doi.org/10.2989/16073606.2021.2013972

    Article  MATH  Google Scholar 

  13. Fošner, A., Jing, W.: Lie centralizers on triangular rings and nest algebras. Adv. Oper. Theory 4, 342–350 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghahramani, H.: Additive mappings derivable at nontrivial idempotents on Banach algebras. Linear Multilinear Algebra 60, 725–742 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghahramani, H.: Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal elements. RM 73, 132–146 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Ghahramani, H.: Characterizing Jordan maps on triangular rings through commutative zero products. Mediterr. J. Math. (2018). https://doi.org/10.1007/s00009-018-1082-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghahramani, H., Jing, W.: Lie centralizers at zero products on a class of operator algebras. Ann. Funct. Anal. 12, 1–12 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghahramani, H., Ghosseiri, M.N., Heidari Zadeh, L.: On the Lie derivations and generalized Lie derivations of quaternion rings. Commun. Algebra 47, 1215–1221 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jabeen, A.: Lie (Jordan) centralizers on generalized matrix algebras. Commun. Algebra (2020). https://doi.org/10.1080/00927872.2020.1797759

    Article  MATH  Google Scholar 

  20. Jacobson, N.: Lie Algebras. Interscience Publishers, Geneva (1962)

    MATH  Google Scholar 

  21. Ji, P., Qi, W.: Characterizations of Lie derivations of triangular algebras. Linear Algebra Appl. 435, 1137–1146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, P., Qi, W., Sun, X.: Characterizations of Lie derivations of factor von Neumann algebras. Linear Multilinear Algebra 61, 417–428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson, B.E.: Symmetric amenability and the nonexistence of Lie and Jordan derivations. Math. Proc. Camb. Philos. Soc. 120, 455–473 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, L.: On nonlinear Lie centralizers of generalized matrix algebras. Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2020.1810605

    Article  Google Scholar 

  25. McCrimmon, K.: A Taste of Jordan Algebras. Springer, New York (2004)

    MATH  Google Scholar 

  26. Qi, X.F., Hou, J.C.: Characterization of Lie derivations on prime rings. Commun. Algebra 39, 3824–3835 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Villena, A.R.: Lie derivations on Banach algebras. J. Algebra 226, 390–409 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y.: Lie n-derivations of unital algebras with idempotents. Linear Algebra Appl. 458, 512–525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y.: Lie (Jordan) derivations of arbitrary triangular algebras. Aequat. Math. 93, 1221–1229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y.: Lie derivations of triangular algebras without assuming unity. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1570068

    Article  Google Scholar 

Download references

Acknowledgements

The work of B. Fadaee has been supported financially by Vice Chancellorship of Research and Technology, University of Kurdistan under research Project No. 99/11/19181. We thank Dr. Issa Mohammadi for carefully reading the article and editing and writing suggestions.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fadaee.

Ethics declarations

Competing interests

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaee, B., Fošner, A. & Ghahramani, H. Centralizers of Lie Structure of Triangular Algebras. Results Math 77, 222 (2022). https://doi.org/10.1007/s00025-022-01756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01756-8

Keywords

Mathematics Subject Classification

Navigation