Skip to main content
Log in

Stereographic Metric and Dimensions of Fractals on the Sphere

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A new metric, called stereographic metric is introduced on the sphere \({{\textbf {S}}}{\setminus } N\), where N is the north pole of the sphere \({{\textbf {S}}}\). Some properties of the iterated function system and its attractor on the sphere \({{\textbf {S}}}{\setminus } N\) is characterized with respect to the stereographic metric, chordal metric and Euclidean metric. For a fixed non-empty compact subset F of \({{\textbf {S}}}{\setminus } N\), the relation between the Hausdörff dimensions of F with respect to the Euclidean metric and stereographic metric is investigated as well as a similar investigation is made for a non-empty compact subset K on the plane \(z=0\) with respect to the Euclidean metric and chordal metric. We also compare the Hausdörff dimensions of a non-empty compact subset F on the sphere \({{\textbf {S}}}{\setminus } N\) and its projection \(F'\) (through the stereographic map), on the plane \(z=0\). Also, we found similar results for Box dimensions as well as Assouad dimensions. Finally, we define a fractal path on the sphere \({{\textbf {S}}}{\setminus } N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mandelbrot, B.: The Fractal Geometry of Nature. Macmillan, New York (1977)

    Google Scholar 

  2. Hutchinson, J.E.: Fractals and self similarity. Ind. Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F.: Fractal Everywhere. Academic Press, London (1988)

    MATH  Google Scholar 

  4. Barnsley, M.F., Vince, A.: Developments in fractal geometry. Bull. Math. Sci. 3, 299–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. 399(1817), 243–275 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Barnsley, M.F.: Fractal function and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Katunin, A., Kurzyk, D.: General rules of fractals construction from polyhedra. J. Geom. Grap. 16(2), 129–137 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Vass, J.: On intersecting IFS fractals with lines. Fractals 22(4), 1–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Falconer, K.: Fractal Geometry Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  10. Navascues, M.A.: Fractal trigonometric approximation. Electron. Trans. Numer. Anal. 20, 64–74 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Navascués, M. A., Mohapatra, R. N., Akhtar, M. N.: Construction of Fractal Surfaces, 28(2) (2020)

  12. Fraser, J.M.: Assouad type dimension and homogeneity of fractals. Trans. Am. Math. Soc. 366(12), 1–40 (2013)

    MathSciNet  Google Scholar 

  13. Falconer, K.J., Fraser, J.M., Kempton, T.: Intermediate dimensions. Math. Zeit. 296, 813–830 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Metzler, W., Yun, C.: Construction of fractal interpolation surfaces on rectangular grids. Int. J. Bifurc. Chaos 20(12), 4079–4086 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hardin, D.P., Massopust, P.R.: The capacity for a class of fractal functions. Commun. Math. Phys. 105(3), 455–460 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Akhtar, M.N., Prasad, M.G.P., Navascues, M.A.: Box dimensions of \(\alpha \)-fractal functions. Fractals 24(3), 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Akhtar, M.N., Prasad, M.G.P., Navascues, M.A.: Box dimension of \(\alpha \)-fractal function with variable scaling factors in subintervals. Chaos Solitons Fractals 103, 440–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Atkins, R., Barnsley, M.F., Wilson, D.C., Vince, A.: A characterization of pointfibred affine iterated function systems. Top. Proc. 38, 189–211 (2010)

    MATH  Google Scholar 

  19. Vince, A.: Möbius Iterated Function Systems 365(1), 491–509 (2013)

  20. Ahlfors, L.V.: Complex Analysis An Introduction to the Theory of Analytic Function of One Complex Variable, 2nd edn. McGraw-Hill, New York (1966)

    Google Scholar 

  21. Navascués, M.A.: Fractal spherical harmonics. Int. J. Anal. 2013, 1–7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Navascués, M.A.: Fractal Functions on the Sphere. J. Comp. Anal. Appl. 9(3) (2007)

  23. Akhtar, M.N., Prasad, M.G.P., Navascués, M.A.: More general fractal functions on the sphere. M. J. Math. 16(6), 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Bak, J., Newman, D.J.: Complex Analysis, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  25. Conway, J.B.: Function of One Complex Variable, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  26. Gamelin, T.W.: Complex Analysis. Springer, Berlin (2000)

    Google Scholar 

  27. Fraser, J.M.: Interpolating between dimensions. Frac. Geom. Stoc. VI 76, 3–24 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Barnsley, M.F., Lesniak, K.: Basic topological structure of fast basins. Fractals 26(3), 01–21 (2013)

    MathSciNet  Google Scholar 

  29. Garcia, I.: Assouad dimension and local structure of self-similar sets with overlaps in \({\mathbb{R} }^d\). Adv. Math. 370(1), 1–25 (2020)

    Google Scholar 

Download references

Funding

First author acknowledges the Department of Science and Technology (DST), Govt. of India, for the financial support under the scheme “Fund for Improvement of S &T Infrastructure (FIST)” (File No. SR/FST/MS-I/2019/41). Second author acknowledges the Council of Scientific & Industrial Research (CSIR), India, for the financial support under the scheme “JRF” (File No. 08/155(0065)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nasim Akhtar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.N., Hossain, A. Stereographic Metric and Dimensions of Fractals on the Sphere. Results Math 77, 213 (2022). https://doi.org/10.1007/s00025-022-01745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01745-x

Keywords

Mathematics Subject Classification

Navigation