Skip to main content
Log in

Block Designs with \(\gcd (r,\lambda )=1\) Admitting Flag-Transitive Automorphism Groups

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a classification of \(\mathbf{2}\)-designs with \(\mathbf{gcd}({{\varvec{r}}},{\varvec{\lambda }})=\mathbf{1}\) admitting flag-transitive automorphism groups. If \({{\varvec{G}}}\) is a flag-transitive automorphism group of a non-trivial \(\mathbf{2}\)-design \(\mathcal {{\varvec{D}}}\) with \(\mathbf{gcd}({{\varvec{r}}},{\varvec{\lambda }})=\mathbf{1}\), then either \((\mathcal {{\varvec{D}}},{{\varvec{G}}})\) is one of the known examples described in this paper, or \(\mathcal {{\varvec{D}}}\) has \({{\varvec{q}}} = {{\varvec{p}}}^{{{\varvec{d}}}}\) points with \({{\varvec{p}}}\) prime and \({{\varvec{G}}}\) is a subgroup of \(\mathbf{A}{\varvec{\Gamma }}{} \mathbf{L}_{\mathbf{1}}({{\varvec{q}}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alavi, S.H., Bayat, M., Daneshkhah, A.: Finite exceptional groups of Lie type and symmetric designs. Discrete Mathematics 345(8), 112894 (2022). https://doi.org/10.1016/j.disc.2022.112894

    Article  MathSciNet  MATH  Google Scholar 

  2. Alavi, S.H., Daneshkhah, A., Mouseli, F.: A classification of flag-transitive block designs. Journal of Algebraic Combinatorics 55, 729–779 (2022). https://doi.org/10.1007/s10801-021-01068-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Alavi, S.H.: A note on two families of 2-designs arose from Suzuki-Tits ovoid. Algebra and Discrete Mathematics (2021). Accepted

  4. Alavi, S.H.: Flag-transitive block designs and finite exceptional simple groups of Lie type. Graphs and Combinatorics 36(4), 1001–1014 (2020). https://doi.org/10.1007/s00373-020-02161-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups. Designs, Codes and Cryptography 79(2), 337–351 (2016). https://doi.org/10.1007/s10623-015-0055-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Alavi, S.H., Bayat, M., Daneshkhah, A.: Flag-transitive block designs and unitary groups. Monatshefte für Mathematik 193(3), 535–553 (2020). https://doi.org/10.1007/s00605-020-01421-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Alavi, S.H., Bayat, M., Daneshkhah, A.: Correction to: Flag-transitive block designs and unitary groups. Monatshefte für Mathematik 195(2), 371–376 (2021). https://doi.org/10.1007/s00605-021-01546-4

    Article  MathSciNet  MATH  Google Scholar 

  8. André, J.: Über Parallelstrukturen. II. Translationsstrukturen. Math. Z. 76, 155–163 (1961). https://doi.org/10.1007/BF01210967

    Article  MathSciNet  MATH  Google Scholar 

  9. Barlotti, A.: Un’estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. 3(10), 498–506 (1955)

    MathSciNet  MATH  Google Scholar 

  10. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Vol. I, 2nd edn. Encyclopedia of Mathematics and its Applications vol. 69, p. 1100. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9780511549533

  11. Biliotti, M., Montinaro, A.: On flag-transitive symmetric designs of affine type. J. Combin. Des. 25(2), 85–97 (2017). https://doi.org/10.1002/jcd.21533

    Article  MathSciNet  MATH  Google Scholar 

  12. Biliotti, M., Montinaro, A., Rizzo, P.: Nonsymmetric 2-\((v, k,\lambda )\) designs, with \((r,\lambda )=1\), admitting a solvable flag-transitive automorphism group of affine type. J. Combin. Des. 27(12), 784–800 (2019). https://doi.org/10.1002/jcd.21677

    Article  MathSciNet  MATH  Google Scholar 

  13. Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive sporadic groups. Unpublished note

  14. Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive groups. J. of Combinatorial Theory, Ser. A 49(2), 268–293 (1988). https://doi.org/10.1016/0097-3165(88)90056-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P.B., Liebeck, M.W., Saxl, J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36, 89–94 (1990). https://doi.org/10.1007/BF00181466

    Article  MathSciNet  MATH  Google Scholar 

  16. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. Discrete Mathematics and its Applications (Boca Raton), p. 984. Chapman & Hall/CRC, Boca Raton, FL (2007)

  17. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups, p. 252. Oxford University Press, Eynsham (1985). (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray)

  18. Daneshkhah, A.: Ree groups as automorphism groups of block designs. Submitted

  19. Davies, D.: Automorphisms of designs. Phd thesis, University of East Anglia (1987)

  20. Delandtsheer, A.: Finite flag-transitive linear spaces with alternating socle. In: Algebraic Combinatorics and Applications (GößWeinstein, 1999), pp. 79–88. Springer (2001)

  21. Delandtsheer, A.: Flag-transitive finite simple groups. Arch. Math. (Basel) 47(5), 395–400 (1986). https://doi.org/10.1007/BF01189977

    Article  MathSciNet  MATH  Google Scholar 

  22. Dembowski, P.: Finite Geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, p. 375. Springer (1968)

  23. Devillers, A., Liang, H., Praeger, C.E., Xia, B.: On flag-transitive 2-\((v, k,2)\) designs. J. Combin. Theory Ser. A 177, 105309–45 (2021). https://doi.org/10.1016/j.jcta.2020.105309

    Article  MathSciNet  MATH  Google Scholar 

  24. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163, p. 346. Springer (1996). https://doi.org/10.1007/978-1-4612-0731-3

  25. Foulser, D.A.: The flag-transitive collineation groups of the finite Desarguesian affine planes. Canadian J. Math. 16, 443–472 (1964). https://doi.org/10.4153/CJM-1964-047-3

  26. Hering, C.: Two new sporadic doubly transitive linear spaces. In: Finite Geometries (Winnipeg, Man., 1984). Lecture Notes in Pure and Appl. Math. vol. 103, pp. 127–129. Dekker, New York (1985). https://doi.org/10.1901/jaba.1985.18-127

  27. Hering, C.: Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27. Abh. Math. Sem. Univ. Hamburg 34, 203–208 (1970). https://doi.org/10.1007/BF02992463

    Article  MathSciNet  MATH  Google Scholar 

  28. Higman, D.G., McLaughlin, J.E.: Geometric \(ABA\)-groups. Illinois J. Math. 5, 382–397 (1961)

    Article  MathSciNet  Google Scholar 

  29. Johnson, N.L.: Combinatorics of Spreads and Parallelisms. Pure and Applied Mathematics (Boca Raton), vol. 295, p. 651. . CRC Press, Boca Raton, FL (2010). https://doi.org/10.1201/EBK1439819463

    Book  Google Scholar 

  30. Kantor, W.M.: Classification of \(2\)-transitive symmetric designs. Graphs Combin. 1(2), 165–166 (1985). https://doi.org/10.1007/BF02582940

    Article  MathSciNet  MATH  Google Scholar 

  31. Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A 38(1), 66–74 (1985). https://doi.org/10.1016/0097-3165(85)90022-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Kantor, W.M.: Primitive permutation groups of odd degree, and an application to finite projective planes. J. Algebra 106(1), 15–45 (1987). https://doi.org/10.1016/0021-8693(87)90019-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Kleidman, P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite Geometries and Combinatorial Designs (Lincoln, NE, 1987). Contemp. Math. vol. 111, pp. 117–136. Amer. Math. Soc., Providence, RI (1990). https://doi.org/10.1090/conm/111/1079743

  34. Kleidman, P.B.: The subgroup structure of some finite simple groups. PhD thesis, University of Cambridge (1987)

  35. Lander, E.S.: Symmetric Designs: an Algebraic Approach. London Mathematical Society Lecture Note Series vol. 74, p. 306. Cambridge University Press, Cambridge (1983). https://doi.org/10.1017/CBO9780511662164

  36. Liebeck, M.W.: The affine permutation groups of rank three. Proc. of the London Math. Soc. s3–54(3), 477–516 (1987). https://doi.org/10.1112/plms/s3-54.3.477

    Article  MathSciNet  MATH  Google Scholar 

  37. Liebeck, M.W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type. J. Combin. Theory Ser. A 84(2), 196–235 (1998). https://doi.org/10.1006/jcta.1998.2897

    Article  MathSciNet  MATH  Google Scholar 

  38. Lüneburg, H.: Some remarks concerning the Ree groups of type \((G_{2})\). J. Algebra 3, 256–259 (1966). https://doi.org/10.1016/0021-8693(66)90014-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Lüneburg, H.: Translation Planes, p. 278. Springer-Verlag, Berlin-New York (1980)

    Book  Google Scholar 

  40. Montinaro, A., Biliotti, M., Francot, E.: Classification of 2- (\(v, k,\lambda \)) designs with (r,\(\lambda \))=1 and \(\lambda > 1\), admitting a non-solvable flag-transitive automorphism group of affine type. Journal of Algebraic Combinatorics 55, 853–889 (2022). https://doi.org/10.1007/s10801-021-01075-1

    Article  MathSciNet  MATH  Google Scholar 

  41. O’Reilly-Regueiro, E.: On primitivity and reduction for flag-transitive symmetric designs. J. Combin. Theory Ser. A 109(1), 135–148 (2005). https://doi.org/10.1016/j.jcta.2004.08.002

    Article  MathSciNet  MATH  Google Scholar 

  42. Panella, G.: Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 3(10), 507–513 (1955)

    MathSciNet  MATH  Google Scholar 

  43. Pauley, M., Bamberg, J.: A construction of one-dimensional affine flag-transitive linear spaces. Finite Fields Appl. 14(2), 537–548 (2008). https://doi.org/10.1016/j.ffa.2007.07.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A 100(2), 322–348 (2002). https://doi.org/10.1006/jcta.2002.3305

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, D., Zhou, S.: Flag-transitive \(2\)-\((v, k,\lambda )\) symmetric designs with sporadic socle. J. of Combinatorial Designs 23(4), 140–150 (2015). https://doi.org/10.1002/jcd.21385

    Article  MathSciNet  MATH  Google Scholar 

  46. Tits, J.: Ovoïdes et groupes de Suzuki. Arch. Math. 13, 187–198 (1962). https://doi.org/10.1007/BF01650065

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhan, X., Ding, S.: Comments on “Flag-transitive block designs and unitary groups’’. Monatshefte für Mathematik 195(1), 177–180 (2021). https://doi.org/10.1007/s00605-020-01491-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhan, X., Zhou, S.: Flag-transitive non-symmetric 2-designs with (\(r,\lambda \))=1 and sporadic socle. Designs, Codes and Cryptography 81(3), 481–487 (2016). https://doi.org/10.1007/s10623-015-0171-6

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhan, X., Zhou, S.: Non-symmetric 2-designs admitting a two-dimensional projective linear group. Designs, Codes and Cryptography 86(12), 2765–2773 (2018). https://doi.org/10.1007/s10623-018-0474-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Y., Zhou, S.: Flag-transitive non-symmetric 2-designs with \((r,\lambda )=1\) and Exceptional Groups of Lie type. The Elect. J. of Combinatorics 27(2), 2–9 (2020)

    MathSciNet  Google Scholar 

  51. Zhou, S., Wang, Y.: Flag-transitive non-symmetric 2-designs with \((r,\lambda )=1\) and alternating socle. Electron. J. Combin. 22(2), 2–615 (2015)

    Article  MathSciNet  Google Scholar 

  52. Zhu, Y., Guan, H., Zhou, S.: Flag-transitive \(2\)-\((v, k, \lambda )\) symmetric designs with \((k, \lambda ) = 1\) and alternating socle. Frontiers of Math. in China 10(6), 1483–1496 (2015)

    Article  MathSciNet  Google Scholar 

  53. Zieschang, P.-H.: Flag transitive automorphism groups of 2-designs with \((r,\lambda )=1\). J. of Algebra 118(2), 369–375 (1988). https://doi.org/10.1016/0021-8693(88)90027-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Shenglin Zhou is supported by the National Natural Science Foundation of China (Grant No.11871224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Daneshkhah.

Ethics declarations

Conflict of Interest

The authors confirm that this manuscript has not been published elsewhere. It is not also under consideration by another journal. They also confirm that there are no known conflicts of interest associated with this publication. The authors have no competing interests to declare that are relevant to the content of this article and they confirm that availability of data and material is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.H., Bayat, M., Biliotti, M. et al. Block Designs with \(\gcd (r,\lambda )=1\) Admitting Flag-Transitive Automorphism Groups. Results Math 77, 151 (2022). https://doi.org/10.1007/s00025-022-01697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01697-2

Keywords

Mathematics Subject Classification

Navigation