Skip to main content
Log in

Global Existence and Scattering Behavior for One Dimensional Wave Maps into Riemannian Manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This paper explores the global existence and scattering behavior for wave maps from Minkowski space \({\mathbb {R}}^{1+1}\) into general Riemannian manifolds, provided the initial data are small. In particular, we focus on the scattering fields of wave maps at the infinities, via which we conclude that the nonlinear scattering operator can be linearized as the corresponding linear scattering operator. This is accomplished by first exploiting the null-form structure in wave map equations, followed by a systematic analysis of weighted energy estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math. 145, 597–618 (2001)

    Article  MathSciNet  Google Scholar 

  2. Cazenave, T., Shatah, J., Tahvildar-Zadeh, A.S.: Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields. Ann. Inst. H. Poincaré Phys. Théor. 68, 315–349 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Chiang, Y.-J.: Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields. Frontiers in Mathematics, Birkhäuser/Springer, Basel (2013)

    Book  Google Scholar 

  4. Chiodaroli, E., Krieger, J.: A class of large global solutions for the wave-map equation. Trans. Am. Math. Soc. 369, 2747–2773 (2017)

    Article  MathSciNet  Google Scholar 

  5. Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39, 267–282 (1986)

    Article  MathSciNet  Google Scholar 

  6. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the regularity of spherically symmetric wave maps. Commun. Pure Appl. Math. 46, 1041–1091 (1993)

    Article  MathSciNet  Google Scholar 

  7. Christodoulou, D., Tahvildar-Zadeh, A.S.: On the asymptotic behavior of spherically symmetric wave maps. Duke Math. J. 71, 31–69 (1993)

    Article  MathSciNet  Google Scholar 

  8. Gu, C.H.: On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space. Commun. Pure Appl. Math. 33, 727–737 (1980)

    Article  MathSciNet  Google Scholar 

  9. Jendrej, J., Lawrie, A.: Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math. 213, 1249–1325 (2018)

    Article  MathSciNet  Google Scholar 

  10. Keel, M., Tao, T.: Local and global well-posedness of wave maps on \({\mathbb{R}}^{1+1}\) for rough data. Internat. Math. Res. Notices 1998, 1117–1156 (1998)

    Article  Google Scholar 

  11. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), 293-326, Lectures in Appl. Math., 23, Am. Math. Soc., Providence, RI (1986)

  12. Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. A celebration of John F. Nash. Jr. Duke Math. J. 81, 99–133 (1995)

    MATH  Google Scholar 

  13. Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to wave maps. Duke Math. J. 87, 553–589 (1997)

    Article  MathSciNet  Google Scholar 

  14. Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. Commun. Partial Differ. Equ. 22, 901–918 (1997)

    Article  MathSciNet  Google Scholar 

  15. Krieger, J.: Global regularity of wave maps in \(2\) and \(3\) spatial dimensions. Thesis (Ph.D.)-Princeton University. 2003. 265 pp. (2003)

  16. Krieger, J.: Global regularity and singularity development for wave maps. Surveys in differential geometry. Vol. XII. Geometric flows, 167-201, Surv. Differ. Geom., 12, Int. Press, Somerville, MA (2008)

  17. Lawrie, A., Oh, S.-J., Shahshahani, S.: The Cauchy problem for wave maps on hyperbolic space in dimensions \(d\geqslant 4\). Int. Math. Res. Not. IMRN 2018, 1954–2051 (2018)

    Article  Google Scholar 

  18. Li, M.N.: An inverse scattering theorem for \((1+1)\)-dimensional semi-linear wave equations with null conditions. J. Hyperbolic Differ. Equ. 18, 143–167 (2021)

    Article  MathSciNet  Google Scholar 

  19. Li, M.N.: Rigidity theorems from infinity for nonlinear Alfvén waves. (In Chinese). Thesis (Ph.D.)-Tsinghua University, November 2021, 108 pp (2021)

  20. Lindblad, H., Nakamura, M., Sogge, C.D.: Remarks on global solutions for nonlinear wave equations under the standard null conditions. J. Differ. Equ. 254, 1396–1436 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lindblad, H., Tao, T.: Asymptotic decay for a one-dimensional nonlinear wave equation. Anal. PDE 5, 411–422 (2012)

    Article  MathSciNet  Google Scholar 

  22. Luli, G.K., Yang, S.W., Yu, P.: On one-dimension semi-linear wave equations with null conditions. Adv. Math. 329, 174–188 (2018)

    Article  MathSciNet  Google Scholar 

  23. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On the well-posedness of the wave map problem in high dimensions. Commun. Anal. Geom. 11, 49–83 (2003)

    Article  MathSciNet  Google Scholar 

  24. Nakamura, M.: Remarks on a weighted energy estimate and its application to nonlinear wave equations in one space dimension. J. Differ. Equ. 256, 389–406 (2014)

    Article  MathSciNet  Google Scholar 

  25. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \(O(3)\)-model. Ann. Math. 2(172), 187–242 (2010)

    Article  MathSciNet  Google Scholar 

  26. Shatah, J.: Weak solutions and development of singularities of the \(SU(2)\)-model. Commun. Pure Appl. Math. 41, 459–469 (1988)

    Article  MathSciNet  Google Scholar 

  27. Tao, T.: Ill-posedness for one-dimensional wave maps at the critical regularity. Am. J. Math. 122, 451–463 (2000)

    Article  MathSciNet  Google Scholar 

  28. Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 2001, 299–328 (2001)

    Article  MathSciNet  Google Scholar 

  29. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224, 443–544 (2001)

    Article  MathSciNet  Google Scholar 

  30. Tataru, D.: Local and global results for wave maps. I. Commun. Partial Differ. Equ. 23, 1781–1793 (1998)

    Article  MathSciNet  Google Scholar 

  31. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123, 37–77 (2001)

    Article  MathSciNet  Google Scholar 

  32. Tataru, D.: The wave maps equation. Bull. Am. Math. Soc. (N.S.) 41, 185–204 (2004)

    Article  MathSciNet  Google Scholar 

  33. Terng, C.-L., Uhlenbeck, K.: \(1+1\) wave maps into symmetric spaces. Commun. Anal. Geom. 12, 345–388 (2004)

    Article  MathSciNet  Google Scholar 

  34. Wang, J.H., Yu, P.: Long time solutions for wave maps with large data. J. Hyperbolic Differ. Equ. 10, 371–414 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wei, D.Y., Yang, S.W.: Asymptotic decay for defocusing semilinear wave equations in \({\mathbb{R}}^{1+1}\). Ann. PDE 7, Paper No. 9, 26 pp (2021)

  36. Wong, W.W.Y.: Small data global existence and decay for two dimensional wave maps. arXiv:1712.07684 (2017)

  37. Zhou, Y.: Uniqueness of weak solutions of 1+1 dimensional wave maps. Math. Z. 232, 707–719 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first version of this paper was carried out during the author’s Ph.D. studies at Department of Mathematical Sciences and Yau Mathematical Sciences Center of Tsinghua University. The final stages of this paper were supported in part by the Natural Science Foundation of Jiangsu Province under Grant No. BK20220792; in part by the National Natural Science Foundation of China under Grant No. 12171267; and in part by the Science Climbing Program of Southeast University under Grant No. 4060692201/020.

Funding

The author was supported in part by the Natural Science Foundation of Jiangsu Province under Grant No. BK20220792; in part by the National Natural Science Foundation of China under Grant No. 12171267; and in part by the Science Climbing Program of Southeast University under Grant No. 4060692201/020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengni Li.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M. Global Existence and Scattering Behavior for One Dimensional Wave Maps into Riemannian Manifolds. Results Math 77, 164 (2022). https://doi.org/10.1007/s00025-022-01668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01668-7

Keywords

Mathematics Subject Classification

Navigation