Abstract
This paper investigates the classical integral of various types of fractal interpolation functions namely linear fractal interpolation function, \(\alpha \)-fractal function and hidden variable fractal interpolation function with function scaling factors. The integral of a fractal function is again a fractal function to a different set of interpolation data if the integral of fractal function is predefined at the initial point or end point of the given data. In this study, the selection of vertical scaling factors as continuous functions on the closed interval of \(\mathbb {R}\) provides more diverse fractal interpolation functions compared to the fractal interpolations functions with constant scaling factors.
This is a preview of subscription content, access via your institution.



References
Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)
Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press, New York (1993)
Banerjee, S., Easwaramoorthy, D., Gowrisankar, A.: Fractal Functions, Dimensions and Signal Analysis. Springer, Cham (2011)
Pacurar, C.M.: A countable fractal interpolation scheme involving Rakotch contractions. Results Math. 76, 161 (2021)
Banerjee, S., Hassan, M.K., Mukherjee, S., Gowrisankar, A.: Fractal Patterns in Nonlinear Dynamics and Applications. CRC Press, Baco Raton (2020)
Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57, 14–34 (1989)
Peng, W.L., Yao, K., Zhang, X., Yao, J.: Box dimension of Weyl–Marchaud fractional derivative of linear fractal interpolation functions. Fractals 27(4), 1950058 (2019)
Priyanka, T.M.C., Gowrisankar, A.: Analysis on Wely–Marchaud fractional derivative of types of fractal interpolation function with fractal dimension. Fractals 29(07), 2150215 (2021)
Kui, Y.W., Yao, X.Z.: On the Hadamard fractional calculus of a fractal function. Fractals 26(03), 1850025 (2018)
Verma, S., Viswanathan, P.: Katugampola fractional integral and fractal dimension of bivariate functions. Results Math. 76, 165 (2021)
Verma, S., Viswanathan, P.: A note on Katugampola fractional calculus and fractal dimensions. Appl. Math. Comput. 339, 220–230 (2018)
Ri, M.-G., Yun, C.-H.: Riemann Liouville fractional integral of hidden variable fractal interpolation function. Chaos Solitons Fract. 140, 110126 (2020)
Gowrisankar, A., Guru Prem Prasad, M.: Riemann–Liouville calculus on quadratic fractal interpolation function with variable scaling factors. J. Anal. 27(2), 347–363 (2019)
Wang, H.-Y., Jia-Shan, Yu.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)
Barnsley, M.F., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20(5), 1218–1242 (1989)
Yun, C.-H.: Hidden variable recurrent fractal interpolation functions with function contractivity factors. Fractals 27(7), 1950113 (2019)
Vijender, N.: Approximation by hidden variable fractal functions: a sequential approach. Results Math. 74, 192 (2019)
Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)
Navascués, M.A.: Non-smooth polynomial. Int. J. Math. Anal. 1(4), 159–174 (2007)
Nasim Akhtara, Md., Guru Prem Prasad, M., Navascués, M.A.: Box dimension of \(alpha\)-fractal function with variable scaling factors in subintervals. Chaos Solitons Fract. 103, 440–449 (2017)
Chand, A.K.B., Kapoor, G.P.: Spline coalescence hidden variable fractal interpolation function. J. Appl. Math. 1–17, 36829 (2006)
Kapoor, G.P., Prasad, S.A.: Cubic spline super fractal interpolation functions. Fractals 22(01 & 02), 1450005 (2014)
Kapoor, G.P., Chand, A.K.B.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44, 655–676 (2006)
Priyanka, T.M.C., Gowrisankar, A.: Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator. Eur. Phys. J. Spec. Top. 230, 3789–3805 (2021)
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
All the authors have contributed equally in this paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Agathiyan, A., Gowrisankar, A. & Priyanka, T.M.C. Construction of New Fractal Interpolation Functions Through Integration Method. Results Math 77, 122 (2022). https://doi.org/10.1007/s00025-022-01666-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00025-022-01666-9