Skip to main content
Log in

On the Diophantine Equation \(dx^2+p^{2a}q^{2b}=4y^p\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We investigate the solvability of the Diophantine equation in the title, where \(d>1\) is a square-free integer, pq are distinct odd primes and xyab are unknown positive integers with \(\gcd (x,y)=1\). We describe all the integer solutions of this equation, and then use the main finding to deduce some results concerning the integers solutions of some of its variants. The methods adopted here are elementary in nature and are primarily based on the existence of the primitive divisors of certain Lehmer numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arif, S.A., Al-Ali, A.: On the Diophantine equation \(ax^2 + b^m = 4y^n\). Acta Arith. 103, 343–346 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bhatter, S., Hoque, A., Sharma, R.: On the solutions of a Lebesgue-Nagell type equation. Acta Math. Hungar. 158(1), 17–26 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539, 75–122 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bilu, Y.: On Le’s and Bugeaud’s papers about the equation \(ax^2 + b^{2m-1} = 4c^p\). Monatsh. Math. 137, 1–3 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bugeaud, Y.: On some exponential Diophantine equations. Monatsh. Math. 132, 93–97 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bugeaud, Y., Shorey, T.N.: On the number of solutions of the generalized Ramanujan-Nagell equation. J. Reine Angew. Math. 539, 55–74 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Chakraborty, K., Hoque, A., Sharma, R.: Complete solutions of certain Lebesgue-Ramanujan-Nagell equations. Publ. Math. Debrecen 97(3–4), 339–352 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chakraborty, K., Hoque, A., Srinivas, K.: On the Diophantine equation \(cx^2+p^{2m}=4y^n\), Results Math. 76 (2021), no. 2, 12pp, article no. 57

  9. Cohn, J.H.E.: Square Fibonacci numbers, etc.,. Fibonacci Quart. 2(2), 109–113 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Dabrowski, A., Günhan, N., Soydan, G.: On a class of Lebesgue-Ljunggren-Nagell type equations. J. Number Theory 215, 149–159 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equations, submitted for publication, ArXiv: 2005.05214

  12. Keskin, R., Karaatli, O.: Generalized Fibonacci and Lucas numbers of the form \(5x^2\). Int. J. Number Theory 11(3), 931–944 (2015)

    Article  MathSciNet  Google Scholar 

  13. Le, M.: On the Diophantine equation \(x^2 + D = 4p^n\). J. Number Theory 41(1), 87–97 (1992)

    Article  MathSciNet  Google Scholar 

  14. Le, M.: On the Diophantine equation \(D_1x^2+D_2=4y^n\). Monatsh. Math. 120, 121–125 (1995)

    Article  MathSciNet  Google Scholar 

  15. Le, M., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 115, 473–523 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Ljunggren, W.: New theorems concerning the Diophantine equation \(x^2 + D = 4y^n\). Acta Arith. 21, 183–191 (1972)

    Article  MathSciNet  Google Scholar 

  17. Luca, F., Tengely, Sz., Togbé, A.: On the Diophantine equation \(x^2 +C = 4y^n\). Ann. Sci. Math. Québec 33(2), 171–184 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Mignotte, M.: On the Diophantine equation \(D_1x^2+D_2^m=4y^n\). Portugal Math. 54, 457–460 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Sharma, R.: On Lebesgue-Ramanujan-Nagell type equations. In: Chakraborty, K., Hoque, A., Pandey, P. (eds.) Class Groups of Number Fields and Related Topics, pp. 147–161. Springer, Singapore (2020)

    Chapter  Google Scholar 

  20. Voutier, P.M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comp. 64, 869–888 (1995)

    Article  MathSciNet  Google Scholar 

  21. Yuan, P.Z.: On the Diophantine equation \(ax^2 + by^2 = ck^n\). Indag. Math. (N. S.) 16(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the grants SERB MATRICS Project No. MTR/2017/001006 and SERB-NPDF (PDF/2017/001958), Govt. of India. The authors are grateful to the anonymous referee for careful reading and valuable comments which have helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizul Hoque.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Hoque, A. On the Diophantine Equation \(dx^2+p^{2a}q^{2b}=4y^p\). Results Math 77, 18 (2022). https://doi.org/10.1007/s00025-021-01560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01560-w

Mathematics Subject Classification

Keywords

Navigation