Skip to main content
Log in

Bounds on the Phillips Calculus of Abstract First Order Differential Operators

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For an operator generating a group on \(L^p\) spaces transference results give bounds on the Phillips functional calculus also known as spectral multiplier estimates. In this paper we consider specific group generators which are abstraction of first order differential operators and prove similar spectral multiplier estimates assuming only that the group is bounded on \(L^2\) rather than \(L^p\). We also prove an R-bounded Hörmander calculus result by assuming an abstract Sobolev embedding property and show that the square of a perturbed Hodge–Dirac operator has such calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, D., Duong, X., McIntosh, A.: Operator theory and harmonic analysis. In: Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), volume 34 of Proceedings of the Centre for Mathematical Analysis, pp. 77–136. Australian National University, Canberra (1996)

  2. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(\mathbb{R}^n\) and related estimates. Mem. Am. Math. Soc. 186(871), xviii+75 (2007)

  3. Auscher, P., McIntosh, A., Nahmod, A.: Holomorphic functional calculi of operators, quadratic estimates and interpolation. Indiana Univ. Math. J. 46(2), 375–403 (1997)

    Article  MathSciNet  Google Scholar 

  4. Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(1), 192–248 (2008)

    Article  MathSciNet  Google Scholar 

  5. Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163(3), 455–497 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means. J. Anal. Math. 129, 219–283 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.: Spectral multipliers without semigroup framework and application to random walks. J. Math. Pures Appl. 9(143), 162–191 (2020)

    Article  MathSciNet  Google Scholar 

  8. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(2), 304–335 (1985)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R.R., Weiss, G.: Transference Methods in Analysis. American Mathematical Society, Providence (1976). Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31

  10. Cowling, M., Doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \(H^\infty \)-functional calculus. J. Austral. Math. Soc. Ser. A 60(1), 51–89 (1996)

    Article  MathSciNet  Google Scholar 

  11. Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18(4), 943–973 (2005)

    Article  MathSciNet  Google Scholar 

  12. Frey, D., McIntosh, A., Portal, P.: Conical square function estimates and functional calculi for perturbed Hodge–Dirac operators in \(L^p\). J. Anal. Math. 134(2), 399–453 (2018)

    Article  MathSciNet  Google Scholar 

  13. Frey, D., Portal, P.: \(L^p\) estimates for wave equations with specific \(C^{0,1}\) coefficients, 2020. Preprint available at https://arxiv.org/abs/2010.08326

  14. Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser, Basel (2006)

  15. Haase, M.: A transference principle for general groups and functional calculus on UMD spaces. Math. Ann. 345(2), 245–265 (2009)

    Article  MathSciNet  Google Scholar 

  16. Haase, M.: Transference principles for semigroups and a theorem of Peller. J. Funct. Anal. 261(10), 2959–2998 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hytönen, T., McIntosh, A., Portal, P.: Holomorphic functional calculus of Hodge–Dirac operators in \(L^p\). J. Evol. Equ. 11(1), 71–105 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hytönen, T., van Neerven, J., Portal, P.: Conical square function estimates in UMD Banach spaces and applications to \(H^\infty \)-functional calculi. J. Anal. Math. 106, 317–351 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, volume II. Springer International Publishing (2017)

  20. Kriegler, C.: Functional calculus and dilation for \(C_0\)-groups of polynomial growth. Semigroup Forum 84(3), 393–433 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kriegler, C., Weis, L.: Spectral multiplier theorems via \(H^\infty \)- calculus and \(R\)-bounds. Math. Z. 289(1–2), 405–444 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kunstmann, P.C.: On maximal regularity of type \(L^p\text{- }L^q\) under minimal assumptions for elliptic non-divergence operators. J. Funct. Anal. 255(10), 2732–2759 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kunstmann, P.C., Weis, L.: Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In Functional Analytic Methods for Evolution Equations, volume 1855 of Lecture Notes in Mathematics, pp. 65–311. Springer, Berlin (2004)

  24. McIntosh, A.: Operators which have an \(H^\infty \)-functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), volume 14 of Proceedings of the Centre for Mathematical Analysis, pp. 210–231. Australian National University, Canberra (1986)

  25. Rozendaal, J., Veraar, M.: Sharp growth rates for semigroups using resolvent bounds. J. Evol. Equ. 18(4), 1721–1744 (2018)

    Article  MathSciNet  Google Scholar 

  26. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  27. Stein, E.M., Shakarchi, R.: Fourier Analysis, volume 1 of Princeton Lectures in Analysis. Princeton University Press, Princeton (2003). An introduction

Download references

Acknowledgements

I am extremely thankful to my supervisor Pierre Portal for his continuous support and encouragement. It was his perseverance and foresight which made me kept working on this problem even after facing so many ups and downs. I am also very grateful to Dorothee Frey for her valuable suggestion to Pierre to look at the paper of Peer Kunstmann. I would like to express my heartfelt thanks to Christoph Kriegler as well for suggesting changes in our Theorem 3.2 and improving the result.

Funding

This research is supported by the Australian Government Research Training Program (AGRTP) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himani Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H. Bounds on the Phillips Calculus of Abstract First Order Differential Operators. Results Math 76, 187 (2021). https://doi.org/10.1007/s00025-021-01496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01496-1

Keywords

Mathematics Subject Classification

Navigation