Skip to main content
Log in

On Second Moment of Selberg Zeta-Function for \(\sigma =1\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let Z(s) be the Selberg zeta-function for the modular group. We consider the existence of the second moments of Z(s) and of its reciprocal on \(\sigma =1\). The existence of such moments is related to the properties of certain Beurling natural numbers. Here the behavior of the counting function and the distribution of minimal gaps between these Beurling natural numbers are important. We also obtain unconditional upper bounds for these moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, Y.: The mean square of the logarithmic derivative of the Selberg zeta-function for cocompact discrete subgroups. Kyushu J. Math. 74, 353–373 (2020)

    Article  MathSciNet  Google Scholar 

  2. Davenport, H.: Multiplicative Number Theory, Rev. by Hugh L. Montgomery, 2nd edn. Springer, Berlin (1980)

    Book  Google Scholar 

  3. Drungilas, P., Garunkštis, R., Kačėnas, A.: Universality of the Selberg zeta-function for the modular group. Forum Math. 25, 533–564 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Drungilas, P., Garunkštis, R., Novikas, A.: Second moment of the Beurling zeta-function. Lith. Math. J. 59, 317–337 (2019)

    Article  MathSciNet  Google Scholar 

  5. Fischer, J.: An Approach to the Selberg Trace Formula via the Selberg Zeta-function, Lecture Notes in Mathematics, vol. 1253. Springer, London (1985)

    Google Scholar 

  6. Garunkštis, R., Grigutis, A.: The size of the Selberg zeta-function at places symmetric with respect to the line \(Re (s)=1/2\). Results Math. 70, 271–281 (2016)

    Article  MathSciNet  Google Scholar 

  7. Garunkštis, R., Šimėnas, R.: On the distribution of the \(a\)-values of the Selberg zeta-function associated to finite volume Riemann surfaces. J. Number Theory 173, 64–86 (2017)

    Article  MathSciNet  Google Scholar 

  8. Garunkštis, R., Šimėnas, R.: On the vertical distribution of the a-points of the Selberg zeta-function attached to a finite volume Riemann surface. Lith. Math. J. 59, 143–155 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hejhal, D.A.: The Selberg Trace Formula for \(PSL(2, \mathbb{R})\), Lecture Notes in Mathematics, 1001, vol. 2. Springer, Berlin (1983)

    Google Scholar 

  10. Hilberdink, T.W., Lapidus, M.L.: Beurling zeta functions, generalised primes, and fractal membranes. Acta Appl. Math. 94, 21–48 (2006)

    Article  MathSciNet  Google Scholar 

  11. Jorgenson, J., Smajlović, L.: On the distribution of zeros of the derivative of Selberg’s zeta function associated to finite volume Riemann surfaces. Nagoya Math. J. 228, 21–71 (2017)

  12. Kurokawa, N.: Parabolic components of zeta functions. Proc. Jpn. Acad. Ser. A Math. Sci. 64, 21–24 (1988)

    Article  MathSciNet  Google Scholar 

  13. Kurokawa, N.: Special values of Selberg zeta functions. Contemp. Math. 83, 133–150 (1989)

    Article  MathSciNet  Google Scholar 

  14. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. B. G. Teubner, Zweiter Band, Leipzig, Berlin (1909)

    MATH  Google Scholar 

  15. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd revised edn. Springer, New York (2002)

  16. Laurent, M.: Linear forms in two logarithms and interpolation determinants. II. Acta Arith. 133, 325–348 (2008)

    Article  MathSciNet  Google Scholar 

  17. Mayer, D.H.: The thermodynamic formalism approach to Selberg’s zeta function for \({\rm PSL}(2,{\bf Z})\). Bull. Am. Math. Soc. (N. S.) 25, 55–60 (1991)

  18. Minamide, M.: On zeros of the derivative of the modified Selberg zeta function for the modular group. J. Indian Math. Soc. (N. S.) 80, 275–312 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Sarnak, P.: Class numbers of indefnite binary quadratic forms. J. Number Theory 15, 229–247 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of the second named author is funded by European Social Fund (Project No. 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Corresponding author

Correspondence to Ramūnas Garunkštis.

Ethics declarations

Conflict of interest

The author has no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drungilas, P., Garunkštis, R. & Novikas, A. On Second Moment of Selberg Zeta-Function for \(\sigma =1\). Results Math 76, 184 (2021). https://doi.org/10.1007/s00025-021-01492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01492-5

Keywords

Mathematics Subject Classification

Navigation