Skip to main content
Log in

A Countable Fractal Interpolation Scheme Involving Rakotch Contractions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The main result of this paper states that for a given countable system of data \(\varDelta \), there exists a countable iterated function system consisting of Rakotch contractions, such that its attractor is the graph of a fractal interpolation function corresponding to \(\varDelta \). In this way, on the one hand, we generalize a result due to Secelean (see Univ Beograd Publ Elektrotehn Fak Ser Mat 14:11–19, 2003) by considering countable systems consisting of Rakotch contractions rather than Banach contractions. On the other hand, we generalize a result due to Ri (see Indag Math 29:962–971, 2018) by considering countable (rather than finite) systems consisting of Rakotch contractions. Some exemplifications are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  Google Scholar 

  2. Barnsley, M.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  3. Barnsley, M., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20, 1218–1242 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bouboulis, P., Dalla, L.: Hidden variable vector valued fractal interpolation functions. Fractals 13, 227–232 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on grids of \({\mathbb{R}}^{n}\). Eur. J. Appl. Math. 18, 449–476 (2007)

    Article  Google Scholar 

  6. Chand, A., Kapoor, G.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11, 277–288 (2003)

    Article  MathSciNet  Google Scholar 

  7. Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10, 53–58 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)

    Article  MathSciNet  Google Scholar 

  9. Gowrisankar, A., Uthayakumar, R.: Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterr. J. Math. 13, 3887–3906 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hutchinson, J.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  11. Jachymski, J.: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327–2335 (1997)

    Article  MathSciNet  Google Scholar 

  12. Jachymski, J., Józwik, I.: Nonlinear contractive conditions: a comparison and related problems. Banach Center Publ. 77, 123–146 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kim, J., Kim, H., Mun, H.: Nonlinear fractal interpolation curves with function vertical scaling factors. Indian J. Pure Appl. Math. 51, 483–499 (2020)

    Article  MathSciNet  Google Scholar 

  14. Massopust, P.: Fractal surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)

    Article  MathSciNet  Google Scholar 

  15. Matkowski, J.: Integrable solutions of functional equations. Dissertationes Math. 127, 68 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Navascués, M., Chand, A., Veedu, V., Sebastiàn, M.: Fractal interpolation functions: a short survey. Appl. Math. 5, 1834–1841 (2014)

    Article  Google Scholar 

  17. Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)

    Article  MathSciNet  Google Scholar 

  18. Rhoades, B.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

    Article  MathSciNet  Google Scholar 

  19. Ri, S.: A new idea to construct the fractal interpolation function. Indag. Math. 29, 962–971 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ri, S.: A new nonlinear bivariate fractal interpolation function. Fractals 26, 1850054 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ri, S., Drakopoulos, V.: How are fractal interpolation functions related to several contractions? In: Mathematical Theorems—Boundary Value Problems and Approximations. Lyudmila Alexeyeva, IntechOpen (2020). https://doi.org/10.5772/intechopen.92662

  22. Ruan, H., Xu, Q.: Fractal interpolation surfaces on rectangular grids. Bull. Aust. Math. Soc. 91, 435–446 (2015)

    Article  MathSciNet  Google Scholar 

  23. Secelean, N.: Countable iterated function systems. Far East J. Dyn. Syst. 3, 149–167 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Secelean, N.: The fractal interpolation for countable systems of data. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14, 11–19 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Secelean, N.: The fractal interpolation in the case of countable system of data. In: Proceedings of the VI Annual Conference of the Romanian Society of Mathematical Sciences, Vol. I (Romanian) (Sibiu: 2002), pp. 184–192. Soc. Ştiinţe Mat, România, Bucharest (2003)

  26. Secelean, N.: Fractal countable interpolation scheme: existence and affine invariance. Math. Rep. (Bucur.) 13(63), 75–87 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Secelean, N.: Countable Iterated Function Systems. LAP Lambert Academic Publishing (2013)

  28. Secelean, N.: Generalized iterated function systems on the space \(l^{\infty }(X)\). J. Math. Anal. Appl 410, 847–858 (2014)

    Article  MathSciNet  Google Scholar 

  29. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Results Math. 75, 93 (2020)

    Article  MathSciNet  Google Scholar 

  30. Viswanathan, P.: Fractal approximation of a function from a countable sample set and associated fractal operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114, 32 (2020)

  31. Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5, 625–634 (1997)

    Article  MathSciNet  Google Scholar 

  32. Zhao, N.: Construction and application of fractal interpolation surfaces. Vis. Comput. 12, 132–146 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Maria Pacurar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacurar, C.M. A Countable Fractal Interpolation Scheme Involving Rakotch Contractions. Results Math 76, 161 (2021). https://doi.org/10.1007/s00025-021-01470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01470-x

Keywords

Mathematics Subject Classification

Navigation