Abstract
The main result of this paper states that for a given countable system of data \(\varDelta \), there exists a countable iterated function system consisting of Rakotch contractions, such that its attractor is the graph of a fractal interpolation function corresponding to \(\varDelta \). In this way, on the one hand, we generalize a result due to Secelean (see Univ Beograd Publ Elektrotehn Fak Ser Mat 14:11–19, 2003) by considering countable systems consisting of Rakotch contractions rather than Banach contractions. On the other hand, we generalize a result due to Ri (see Indag Math 29:962–971, 2018) by considering countable (rather than finite) systems consisting of Rakotch contractions. Some exemplifications are provided.
Similar content being viewed by others
References
Barnsley, M.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)
Barnsley, M.: Fractals Everywhere. Academic Press, New York (1988)
Barnsley, M., Elton, J., Hardin, D., Massopust, P.: Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 20, 1218–1242 (1989)
Bouboulis, P., Dalla, L.: Hidden variable vector valued fractal interpolation functions. Fractals 13, 227–232 (2005)
Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on grids of \({\mathbb{R}}^{n}\). Eur. J. Appl. Math. 18, 449–476 (2007)
Chand, A., Kapoor, G.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11, 277–288 (2003)
Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10, 53–58 (2002)
Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)
Gowrisankar, A., Uthayakumar, R.: Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterr. J. Math. 13, 3887–3906 (2016)
Hutchinson, J.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)
Jachymski, J.: Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 125, 2327–2335 (1997)
Jachymski, J., Józwik, I.: Nonlinear contractive conditions: a comparison and related problems. Banach Center Publ. 77, 123–146 (2007)
Kim, J., Kim, H., Mun, H.: Nonlinear fractal interpolation curves with function vertical scaling factors. Indian J. Pure Appl. Math. 51, 483–499 (2020)
Massopust, P.: Fractal surfaces. J. Math. Anal. Appl. 151, 275–290 (1990)
Matkowski, J.: Integrable solutions of functional equations. Dissertationes Math. 127, 68 (1975)
Navascués, M., Chand, A., Veedu, V., Sebastiàn, M.: Fractal interpolation functions: a short survey. Appl. Math. 5, 1834–1841 (2014)
Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)
Rhoades, B.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)
Ri, S.: A new idea to construct the fractal interpolation function. Indag. Math. 29, 962–971 (2018)
Ri, S.: A new nonlinear bivariate fractal interpolation function. Fractals 26, 1850054 (2018)
Ri, S., Drakopoulos, V.: How are fractal interpolation functions related to several contractions? In: Mathematical Theorems—Boundary Value Problems and Approximations. Lyudmila Alexeyeva, IntechOpen (2020). https://doi.org/10.5772/intechopen.92662
Ruan, H., Xu, Q.: Fractal interpolation surfaces on rectangular grids. Bull. Aust. Math. Soc. 91, 435–446 (2015)
Secelean, N.: Countable iterated function systems. Far East J. Dyn. Syst. 3, 149–167 (2001)
Secelean, N.: The fractal interpolation for countable systems of data. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14, 11–19 (2003)
Secelean, N.: The fractal interpolation in the case of countable system of data. In: Proceedings of the VI Annual Conference of the Romanian Society of Mathematical Sciences, Vol. I (Romanian) (Sibiu: 2002), pp. 184–192. Soc. Ştiinţe Mat, România, Bucharest (2003)
Secelean, N.: Fractal countable interpolation scheme: existence and affine invariance. Math. Rep. (Bucur.) 13(63), 75–87 (2011)
Secelean, N.: Countable Iterated Function Systems. LAP Lambert Academic Publishing (2013)
Secelean, N.: Generalized iterated function systems on the space \(l^{\infty }(X)\). J. Math. Anal. Appl 410, 847–858 (2014)
Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Results Math. 75, 93 (2020)
Viswanathan, P.: Fractal approximation of a function from a countable sample set and associated fractal operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114, 32 (2020)
Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5, 625–634 (1997)
Zhao, N.: Construction and application of fractal interpolation surfaces. Vis. Comput. 12, 132–146 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pacurar, C.M. A Countable Fractal Interpolation Scheme Involving Rakotch Contractions. Results Math 76, 161 (2021). https://doi.org/10.1007/s00025-021-01470-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00025-021-01470-x
Keywords
- fractal interpolation function
- countable iterated function system
- Rakotch contractions
- Matkowski contractions