Skip to main content
Log in

Algebraic Invariants in Abstract Cellular Complex

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Kovalevsky has developed an abstract cellular complex for representing digital images in the combinatorial grid. This paper initiates the notions of cellular homotopy and cellular path homotopy through the continuous connected preserving map and investigates some of their basic properties in the abstract cellular complex. Further, the concept of fundamental groups in the abstract cellular complex is introduced using the notion of cellular homotopy and some of their basic properties are investigated. Finally, the paper presents the concept of homology and fixed point property in the connected abstract cellular complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ayala, R., Domínguez, E., Francés, A., Quintero, A.: Homotopy in digital spaces. Discrete Appl. Math. 125(1), 3–24 (2003)

    Article  MathSciNet  Google Scholar 

  2. Boxer, L.: Classical construction for the digital fundamental group. J. Math. Imaging Vis. 10(1), 51–62 (1999)

    Article  MathSciNet  Google Scholar 

  3. Boxer, L.: Properties of digital homotopy. J. Math. Imaging Vis. 22(1), 19–26 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ege, O., Jain, D., Kumar, S., Park, C., Yun, S.D.: Commuting and compatible mappings in digital metric spaces. J. Fixed Point Theory Appl. 22(1), 16 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Ege, O., Karaca, I.: Lefschetz fixed point theorem for digital images. Fixed Point Theory Appl. 1, 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Ege, O., Karaca, I.: Banach fixed point theorem for digital images. J. Nonlinear Sci. Appl. 8(3), 237–245 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ege, O., Karaca, I.: Digital homotopy fixed point theory. C.R. Math. 353(11), 1029–1033 (2015)

    Article  MathSciNet  Google Scholar 

  8. Han, S.E.: Discrete homotopy of a closed k-surface. Lect. Notes Comput. Sci. 4040, 214–225 (2006)

    Article  MathSciNet  Google Scholar 

  9. Han, S.E.: Banach fixed point theorem from the viewpoint of digital topology. J. Nonlinear Sci. Appl. 9, 895–905 (2016)

    Article  MathSciNet  Google Scholar 

  10. Han, S.E.: Fixed point property for digital spaces. J. Nonlinear Sci. Appl. 10, 2510–2523 (2017)

    Article  MathSciNet  Google Scholar 

  11. Kong, T.Y., Rosenfeld, A.: If we use 4- or 8-connectedness for both the objects and the background, the euler characteristic is not locally computable. Pattern Recogn. Lett. 11(4), 231–232 (1990)

    Article  Google Scholar 

  12. Kovalevsky, V.: Algorithms and data structures for computer topology, Lecture Notes in Computer Science. Digital Image Geom. 2243, 38–58 (2002)

    Article  Google Scholar 

  13. Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26, 41–58 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kovalevsky, V. A.: Digital geometry based on the topology of abstract cell complexes. In: Proceedings of the Third International Colloquium on Discrete Geometry for Computer Imagery, University of Strasbourg, pp. 259-284 (1993)

  15. Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topology and Algorithms for Computer Imagery. Dr. Baerbel Kovalevski Publishing, Berlin (2008)

    Google Scholar 

  16. Oztunc, S., Bildik, N., Mutlu, A.: The construction of simplicial groups in digital images. J. Inequal. Appl. 143, 1900 (2010)

    MATH  Google Scholar 

  17. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17(1), 146–160 (1970)

    Article  MathSciNet  Google Scholar 

  18. Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)

    Article  MathSciNet  Google Scholar 

  19. Rosenfeld, A.: Digital topology. Am. MatH. Monthly 86(8), 621–630 (1979)

    Article  MathSciNet  Google Scholar 

  20. Syama, R., Sai, S.K.G., Yaswanth, R.: Mappings on abstract cellular complex and their applications in image analysis. Int J Comput Math (2020). https://doi.org/10.1080/00207160.2020.1825695

    Article  Google Scholar 

Download references

Acknowledgements

Both authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Syama.

Ethics declarations

Conflict of interest

No potential conflict of interest and there is no funding was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, G.S.S., Syama, R. Algebraic Invariants in Abstract Cellular Complex. Results Math 76, 150 (2021). https://doi.org/10.1007/s00025-021-01455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01455-w

Mathematics Subject Classification

Keywords

Navigation