Skip to main content
Log in

Construction of \(P^{th}\)-Stage Nonuniform Discrete Wavelet Frames

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Motivated by the work of Frazier; and Gabardo and Nashed, we study \(P^{th}\)-stage nonuniform discrete wavelet frames (\(P^{th}\)-stage NUDW frames, in short) for \(\ell ^2(\Lambda )\), a nonuniform discrete space. In nonuniform discrete wavelet frames, the translation set is not necessary a group but a spectrum which is based on the theory of spectral pairs. We characterize first-stage nonuniform discrete Bessel sequences and wavelet frames in nonuniform discrete spaces. Duality and stability of first-stage NUDW frames are also discussed. Finally, by using first-stage NUDW frames, we provide a suitable way to construct the \(P^{th}\)-stage NUDW frames. We illustrate our construction with the help of a concrete example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bemrose, T., Casazza, P.G., Gröchenig, K., Lammers, M.C., Lynch, R.G.: Weaving frames. Oper. Matrices 10(4), 1093–1116 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bhat, M.Y.: Nonuniform discrete wavelets on local fields of positive characteristic. Complex Anal. Oper. Theory 13(5), 2203–2228 (2019)

    Article  MathSciNet  Google Scholar 

  3. Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Birkhäuser, New York (2012)

    MATH  Google Scholar 

  4. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, New York (2016)

    MATH  Google Scholar 

  5. Cohen, A., Ryan, R.: Wavelets and Multiscale Signal Processing. Champman & Hall, London (1995)

    Book  Google Scholar 

  6. de Gosson, M.: The canonical group of transformations of a Weyl–Heisenberg frame; applications to Gaussian and Hermitian frames. J. Geom. Phys. 114, 375–383 (2017)

    Article  MathSciNet  Google Scholar 

  7. Deepshikha, Vashisht L.K: A note on discrete frames of translates in \({\mathbb{C}}^N\). TWMS J. Appl. Eng. Math. 6(1), 143–149 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Deepshikha, Vashisht L.K: Necessary and sufficient conditions for discrete wavelet frames in \({\mathbb{C}}^N\). J. Geom. Phys. 117, 134–143 (2017)

    Article  MathSciNet  Google Scholar 

  9. Deepshikha, Vashisht, L.K., Verma G: Generalized weaving frames for operators in Hilbert spaces. Results Math. 72(3), 1369–1391 (2017)

    Article  MathSciNet  Google Scholar 

  10. Deepshikha, Vashisht L.K: On weaving frames. Houston J. Math. 44(3), 887–915 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Deepshikha, Vashisht L.K: Vector-valued (super) weaving frames. J. Geom. Phys. 134, 48–57 (2018)

    Article  MathSciNet  Google Scholar 

  12. Deepshikha, Vashisht, L.K.: Weaving K-frames in Hilbert spaces. Results Math. 73(2), Art 81, 20 pp (2018)

  13. Favier, S.J., Zalik, R.A.: On the stability of frames and Riesz bases. Appl. Comput. Harmon. Anal. 2(2), 160–173 (1995)

    Article  MathSciNet  Google Scholar 

  14. Frazier, M.W.: An Introduction to Wavelets Through Linear Algebra. Springer, Berlin (1999)

    MATH  Google Scholar 

  15. Gabardo, J.P., Nashed, M.Z.: Non-uniform multiresolution analysis and spectral pairs. J. Funct. Anal. 158, 209–241 (1998)

    Article  MathSciNet  Google Scholar 

  16. Gabardo, J.P., Nashed, M.Z.: An analogue of Cohen’s condition for nonuniform multiresolution analyses. Contemp. Math. 216, 41–61 (1998)

    Article  MathSciNet  Google Scholar 

  17. Gabardo, J.P., Yu, X.: Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs. J. Math. Anal. Appl. 323, 798–817 (2006)

    Article  MathSciNet  Google Scholar 

  18. Gressman, P.: Wavelets on the integers. Collect. Math. 52(3), 257–288 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Han, B.: Framelets and Wavelets: Algorithms, Analysis, and Applications. Birkhäuser, New York (2017)

    Book  Google Scholar 

  20. Heil, C.: A Basis Theory Primer, Expanded edn. Birkhäuser, New York (2011)

    Book  Google Scholar 

  21. Jyoti, Vashisht, L.K.: \(\cal{K}\)-Matrix-valued wave packet frames in \(L^2(\mathbb{R}^d, \mathbb{C}^{s\times r})\). Math. Phys. Anal. Geom. 21(3), Art 21, 19 pp (2018)

  22. Jyoti, Vashisht L.K., Verma, G.: Operators related to the reconstruction property in Banach spaces. Results Math. 74(3), Art. 125, 17 pp (2019)

  23. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)

    MATH  Google Scholar 

  24. Lopez, J., Han, D.: Discrete Gabor frames in \(l^2({\mathbb{Z}}^d)\). Proc. Am. Math. Soc. 141, 3839–3851 (2013)

    Article  Google Scholar 

  25. Lu, D., Li, D.: Frames properties of generalized shift-invariant systems in discrete setting. Appl. Anal. 95(11), 2535–2552 (2016)

    Article  MathSciNet  Google Scholar 

  26. Malhotra, H.K.: A note on extension of nonuniform wavelet Bessel sequences to dual wavelet frames in \(L^2(\mathbb{R})\). Ganita 69(1), 1–8 (2019)

    MathSciNet  Google Scholar 

  27. Malhotra, H.K., Vashisht, L.K.: On scaling function of non-uniform multiresolution analysis in \(L^2({\mathbb{R}})\). Int. J. Wavelets Multiresolut. Inf. Process 18(2), Art. 1950055, 14 pp (2020)

  28. Malhotra, H.K., Vashisht, L.K.: Unitary extension principle for nonuniform wavelet frames in \(L^2({\mathbb{R}})\). Zh. Mat. Fiz. Anal. Geom. 17(1) (2021)

  29. Mallat, S.: Multiresolution approximation and wavelets orthonormal bases of \(L^2(\mathbb{R})\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MATH  Google Scholar 

  30. Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  31. Rioul, O.: A discrete-time multiresolution theory. IEEE Trans. Signal Process. 41(8), 2591–2606 (1993)

    Article  Google Scholar 

  32. Vashisht, L.K., Deepshikha: Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 110, 282–295 (2016)

    Article  MathSciNet  Google Scholar 

  33. Xu, M., Lu, D., Fan, Q.: Construction of \(J^{th}\)-stage discrete periodic wave packet frames. Appl. Anal. 97(10), 1846–1866 (2018)

    Article  MathSciNet  Google Scholar 

  34. Yu, X., Gabardo, J.P.: Nonuniform wavelets and wavelet sets related to one-dimensional spectral pairs. J. Approx. Theory 145(1), 133–139 (2007)

    Article  MathSciNet  Google Scholar 

  35. Zalik, R.A.: Riesz bases and multiresolution analyses. Appl. Comput. Harmon. Anal. 7(3), 315–331 (1999)

    Article  MathSciNet  Google Scholar 

  36. Zalik, R.A.: Orthonormal wavelet systems and multiresolution analyses. J. Appl. Funct. Anal. 5(1), 31–41 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for carefully reading the manuscript, detecting many mistakes, and for offering valuable comments and suggestions which enabled the authors to substantially improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar Vashisht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of first author is supported by the University Grants Commission (UGC), India (Grant No.: 19/06/2016(i)EU-V). The second author is supported by the Faculty Research Programme Grant-IoE, University of Delhi, Delhi-110007, India (Grant No.: IoE/FRP/PCMS/2020/27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, H.K., Vashisht, L.K. Construction of \(P^{th}\)-Stage Nonuniform Discrete Wavelet Frames. Results Math 76, 117 (2021). https://doi.org/10.1007/s00025-021-01427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01427-0

Keywords

Mathematics Subject Classification

Navigation