Skip to main content
Log in

Explicit Solutions of the Coupled Bogoyavlensky Lattice 1(2) Hierarchy

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

By means of the discrete zero curvature representation, the coupled Bogoyavlensky lattice 1(2) hierarchy related to a \(3\times 3\) matrix problem is derived. Resorting to the characteristic polynomial of Lax matrix for the lattice hierarchy, we introduce a trigonal curve \(\mathcal {K}_{m-1}\) of arithmetic genus \(m-1\) and construct the related Baker–Akhiezer function and meromorphic function. By analyzing the asymptotic expansion of the meromorphic function, the algebro-geometric solutions to the stationary coupled Bogoyavlensky lattice 1(2) are obtained. Moreover, the explicit theta function representations for the coupled Bogoyavlensky lattice hierarchy are given with the help of the Abelian differential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirota, R.: Nonlinear partial difference equations. IV. Bäcklund transformation for the discrete-time Toda equation. J. Phys. Soc. Jpn. 45, 321–332 (1978)

    Article  Google Scholar 

  2. Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Ma, W.X., Maruno, K.I.: Complexiton solutions of the Toda lattice equation. Phys. A 343, 219–237 (2004)

    Article  MathSciNet  Google Scholar 

  4. Kodama, Y.: Solutions of the dispersionless Toda equation. Phys. Lett. A 147, 477–482 (1990)

    Article  MathSciNet  Google Scholar 

  5. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585–611 (2021)

    Article  MathSciNet  Google Scholar 

  6. Ma, W.X., Zhang, Y., Tang, Y.N.: Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. E. Asian J. Appl. Math. 10, 732–745 (2020)

    Article  MathSciNet  Google Scholar 

  7. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  Google Scholar 

  8. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equation and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  9. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739–763 (2018)

    Article  MathSciNet  Google Scholar 

  10. Yang, J.Y., Ma, W.X., Khalique, C.M.: Determining lump solutions for a combined soliton equation in \((2+1)\)-dimensions. Eur. Phys. J. Plus 135, 494 (2020)

    Article  Google Scholar 

  11. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30, 991–1013 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ahmad, S., Chowdhury, A.R.: The quasiperiodic solutions to the discrete nonlinear Schrödinger equation. J. Math. Phys. 28, 134–137 (1987)

    Article  MathSciNet  Google Scholar 

  13. Date, E., Tanaka, S.: Analogue of inverse scattering theory for the discrete Hill’s equation and exact solutions for the periodic Toda lattice. Prog. Theor. Phys. 55, 457–465 (1976)

    Article  MathSciNet  Google Scholar 

  14. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2020)

    Article  MathSciNet  Google Scholar 

  15. Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz–Ladik equations. Commun. Pure Appl. Math. 48, 1369–1440 (1995)

    Article  MathSciNet  Google Scholar 

  16. Krichever, I.M.: An algebro-geometric construction of the Zakharov–Shabat equations and their periodic solutions. Dokl. Akad. Nauk SSSR 227, 291–294 (1976)

    MathSciNet  Google Scholar 

  17. Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  18. Geng, X.G., Dai, H.H., Cao, C.W.: Algebro-geometric constructions of the discrete Ablowitz–Ladik flows and applications. J. Math. Phys. 44, 4573–4588 (2003)

    Article  MathSciNet  Google Scholar 

  19. Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac–van Moerbeke hierarchies. Mem. Am. Math. Soc. 135, 1–79 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Gesztesy, F., Holden, H.: Soliton Equations and their Algebro-Geometric Solutions. Volume 1: (1+1)-Dimensional Continuous Models. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  21. Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Soliton Equations and Their Algebro-Geometric Solutions. Volume II: \((1+1)\)-Dimensional Discrete Models. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  22. Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999)

    Article  MathSciNet  Google Scholar 

  23. Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11, 823–879 (1999)

    Article  MathSciNet  Google Scholar 

  24. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wei, J., Geng, X.G., Zeng, X.: Quasi-periodic solutions to the hierarchy of four-component Toda lattices. J. Geom. Phys. 106, 26–41 (2016)

    Article  MathSciNet  Google Scholar 

  26. Geng, X.G., Zeng, X.: Quasi-periodic solutions of the Belov–Chaltikian lattice hierarchy. Rev. Math. Phys. 29, 37–40 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies I. Proc. R. Soc. A 473, 20170232 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchies II. Proc. R. Soc. A 473, 20170233 (2017)

    Article  MathSciNet  Google Scholar 

  29. Bogoyavlensky, O.I.: Integrable discretizations of the KdV equation. Phys. Lett. A 134, 34–38 (1988)

    Article  MathSciNet  Google Scholar 

  30. Bogoyavlensky, O.I.: Five constructions of integrable dynamical systems connected with the Korteweg–de Vries equation. Acta Appl. Math. 13, 227–266 (1988)

    MathSciNet  Google Scholar 

  31. Bogoyavlensky, O.I.: Some constructions of integrable dynamical systems. Math. USSR Izv. 31, 47–75 (1988)

    Article  MathSciNet  Google Scholar 

  32. Bogoyavlensky, O.I.: Algebraic constructions of certain integrable equations. Math. USSR Izv. 33, 39–65 (1989)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H.W., Tu, G.Z., Oevel, W., Fuchssteiner, B.: Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure. J. Math. Phys. 32, 1908–1918 (1991)

    Article  MathSciNet  Google Scholar 

  34. Suris, Y.B.: Integrable discretizations of the Bogoyavlensky lattices. J. Math. Phys. 37, 3982–3996 (1996)

    Article  MathSciNet  Google Scholar 

  35. Papageorgiou, V.G., Nijhoff, F.W.: On some integrable discrete-time systems associated with the Bogoyavlensky lattices. Phys. A 228, 172–188 (1996)

    Article  MathSciNet  Google Scholar 

  36. Hikami, K., Inoue, R.: The Hamiltonian structure of the Bogoyavlensky lattice. J. Phys. Soc. Jpn. 68, 776–783 (1999)

    Article  MathSciNet  Google Scholar 

  37. Wang, J.P.: Recursion operator of the Narita–Itoh–Bogoyavlensky lattice. Stud. Appl. Math. 129, 309–327 (2012)

    Article  MathSciNet  Google Scholar 

  38. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371, 1483–1507 (2019)

    Article  MathSciNet  Google Scholar 

  39. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant Nos. 11971442, 11931017, 11871440), Natural Science Foundation of Hebei Province (Grant No. A2020210005), Foundation of Hebei Education Department of China (Grant No. QN2018050)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Liu, W. & Xue, B. Explicit Solutions of the Coupled Bogoyavlensky Lattice 1(2) Hierarchy. Results Math 76, 67 (2021). https://doi.org/10.1007/s00025-021-01379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01379-5

Keywords

Mathematics Subject Classification

Navigation