Our Friend and Mathematician Karl Strambach

Abstract

This paper is dedicated to Karl Strambach on the occasion of his 80th birthday. Here we want to describe our work with Prof. Karl Strambach.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bartolone, C., Musumeci, S., Strambach, K.: Imprimitive groups highly transitive on blocks. J. Group Theory 7, 463–494 (2004)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bartolone, C., Di Bartolo, A., Strambach, K.: Algebraic \((2, 2)\)-transformation groups. J. Group Theory 12, 181–196 (2009)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Belova, O., Mikeš, J., Strambach, K.: Complex curves as lines of geometries. Results Math. 71(1–2), 145–165 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Belova, O., Mikeš, J., Strambach, K.: Geodesics and almost geodesics curves. Results Math. 73(4), 12 (2018) (Art. 154)

  5. 5.

    Belova, O., Mikeš, J., Strambach, K.: Almost geodesics curves. 13th International Conference on Geometry and Applications. J. Geom. 109(17), 16–17 (2018)

    MATH  Google Scholar 

  6. 6.

    Belova, O., Mikeš, J., Strambach, K.: About almost geodesic curves. Filomat 33(4), 1013–1018 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Di Bartolo, A., Falcone, G., Plaumann, P., Strambach, K.: Algebraic groups and Lie groups with few factors. Springer Lecture Notes in Mathematics 1944 (2008)

  8. 8.

    Di Bartolo, A., Falcone, G., Strambach, K.: Locally compact \((2, 2)\)-transformation groups. Math. Nach. 283, 924–938 (2010)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Di Bartolo, A., Falcone, G., Strambach, K.: Near-rings and groups of affine mappings. Houst. J. Math. 39, 753–780 (2013)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Falcone, G., Figula, Á., Strambach, K.: Multiplicative loops of 2-dimensional topological quasifields. Commun. Algebra 44, 2592–2620 (2016)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Falcone, G., Figula, Á., Strambach, K.: Multiplicative loops of quasifields having complex numbers as kernel. Results Math. 72, 2129–2156 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Falcone, G. (Ed.): Lie Groups, Differential Equations, and Geometry (Advances and Surveys), UNIPA Springer Series (2017)

  13. 13.

    Figula, Á., Strambach, K.: Affine extensions of loops. Abh. Math. Sem. Univ. Hamburg 74, 151–162 (2004)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Figula, Á., Strambach, K.: Loops which are semidirect products of groups. Acta Math. Hung. 114, 247–266 (2007)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Figula, Á., Strambach, K.: Loops on spheres having a compact-free inner mapping group. Monatsh. Math. 156, 123–140 (2008)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Figula, Á., Strambach, K.: Subloop incompatible Bol loops. Manuscr. Math. 130, 183–199 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Figula, Á., Strambach, K.: Extensions of groups by weighted Steiner loops. Results Math. 59, 251–278 (2011)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Figula, Á., Strambach, K.: Loops as sections in compact Lie groups. Abh. Math. Sem. Univ. Hamburg 87, 61–68 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mikeš, J., Strambach, K.: Differentiable structures on elementary geometries. Results Math. 53(1–2), 153–172 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Mikeš, J., Strambach, K.: Grünwald shift spaces. Publ. Math. Debrecen 83(1–2), 85–96 (2013)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mikeš, J., Strambach, K.: Shells of monotone curves. Czechosl. Math. J. 65(140)(3), 677–699 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Nagy, P.T., Strambach, K.: Loops as invariant sections in groups and their geometry. Can. J. Math. 46, 1027–1056 (1994)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Nagy, P.T., Strambach, K.: Loops, their cores and symmetric spaces. Isr. J. Math. 105, 285–322 (1998)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Nagy, P.T., Strambach, K.: Loops in Group Theory and Lie Theory, Expositions in Mathematics, vol. 35, pp. xi+361. Walter de Gruyter, Berlin (2002)

  25. 25.

    Nagy, P.T., Strambach, K.: Coverings of topological loops. J. Math. Sci. (N. Y.) 137, 5098–5116 (2006)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Nagy, P.T., Strambach, K.: Schreier loops. Czechoslovak Math. J. 58, 759–786 (2008)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Nagy, P.T., Strambach, K.: Transitive families of transformations. Moscow Math. J. 13, 667–691 (2013)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Plaumann, P., Strambach, K.: Zweidimensionale Quasialgebren mit Nullteilern. Aequ. Math. 15, 249–264 (1977)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga Belova.

Additional information

In memory of Prof. Karl Strambach (1939–2016)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belova, O., Falcone, G., Figula, Á. et al. Our Friend and Mathematician Karl Strambach. Results Math 75, 69 (2020). https://doi.org/10.1007/s00025-020-1181-x

Download citation

Keywords

  • Biographies
  • personalia
  • bibliographies
  • loops
  • group theory
  • imprimitive groups
  • algebraic groups
  • Lie groups
  • complex curves
  • Hjelmslev geometry
  • Grünwald spaces
  • shells of curves
  • affine connection
  • geodesics
  • almost geodesics

Mathematics Subject Classification

  • Primary 01A70
  • Secondary 14L30
  • 16Y30
  • 20B99
  • 20G99
  • 20N05
  • 22F50
  • 22F99
  • 51B15
  • 53B05
  • 53B20
  • 53B30