Skip to main content
Log in

Lines of Affine Principal Curvatures of Surfaces in 3-Space

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this work we study the affine principal lines on surfaces in 3-space. We consider the binary differential equation of the affine curvature lines and obtain the topological models of these curves near the affine umbilic points (elliptic and hyperbolic). We also describe the local generic behavior of affine curvature lines at points with double eigenvalues of the affine shape operator and at parabolic points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold, V.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  2. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps I. Classification of Critical Points, Caustics and Wave Fronts, Birkhauser, Basel (1985)

    MATH  Google Scholar 

  3. Banchoff, T., Gaffney, T., McCrory, C.: Cusps of Gauss Mappings, Research Notes in Mathematics 55. Pitman (Advanced Publishing Program), Boston (1982)

    MATH  Google Scholar 

  4. Blaschke, W., Reidemeister, K.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II. Affine Differentialgeometrie. Springer, Berlin (1923)

    Book  Google Scholar 

  5. Bleecker, D., Wilson, L.: Stability of Gauss maps. Ill. J. Math. 22(2), 279–289 (1978)

    Article  MathSciNet  Google Scholar 

  6. Bruce, J.W., Fidal, D.L.: On binary differential equations and umbilics. Proc. R. Soc. Edinb. 111A, 147–168 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bruce, J.W., Tari, F.: On binary differential equations. Nonlinearity 8(2), 255–271 (1995)

    Article  MathSciNet  Google Scholar 

  8. Bruce, J.W., Tari, F.: Dupin indicatrices and families of curve congruences. Trans. Am. Math. Soc. 357, 267–285 (2005)

    Article  MathSciNet  Google Scholar 

  9. Calabi, E.: Hipersurfaces with maximal affinely invariants area. Am. J. Math. 104, 91–126 (1982)

    Article  Google Scholar 

  10. Craizer, M., Alvim, M., Teixeira, R.: Area distances of convex plane curves and improper affine spheres. SIAM J. Imaging Sci. 1(3), 209–227 (2008)

    Article  MathSciNet  Google Scholar 

  11. Darboux, J.G.: Sur la forme des lignes de courbure dans la voisinage d’un ombilic, Leçons sur la Théorie des Surfaces, IV, Note 7. Gauthier Villars, Paris (1896)

    Google Scholar 

  12. Davis, D.: Affine Differential Geometry & Singularity Theory. Ph.D. thesis, University of Liverpool (2008)

  13. Davydov, A.A.: Normal forms of differential equations unresolved with respect to derivatives in a neighbourhood of its singular point. Funct. Anal. Appl. 19, 1–10 (1985)

    Article  Google Scholar 

  14. Davydov, A.A.: Qualitative Control Theory, Translations of Mathematical Monographs, 142. AMS, Providence (1994)

    Google Scholar 

  15. Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L.: Affine Differential Geometry for Surfaces in Codimension One, Two and Three. Geometry and Topology of Submanifolds, VI (Leuven, 1993/Brussels, 1993), pp. 82–90. World Scientific Publishing, Singapore (1994)

    MATH  Google Scholar 

  16. Fox, D.J.F.: What is \(\ldots \) an affine sphere? Not. Am. Math. Soc. 59(3), 420–423 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Garcia, R., Gutierrez, C., Sotomayor, J.: Structural stability of asymptotic lines on surfaces immersed in \({\mathbb{R}}^3\). Bull. Sci. Math. 123(8), 599–622 (1999)

    Article  MathSciNet  Google Scholar 

  18. Garcia, R., Gutierrez, C., Sotomayor, J.: Lines of principal curvature around umbilics and Whitney umbrellas. Tohoku Math. J. 52, 163–172 (2000)

    Article  MathSciNet  Google Scholar 

  19. Garcia, R., Mochida, D.K.H., Romero Fuster, M.C., Ruas, M.A.S.: Inflection points and topology of surfaces in \(4\)-space. Trans. Am. Math. Soc 352, 3029–3043 (2000)

    Article  MathSciNet  Google Scholar 

  20. Garcia, R., Sotomayor, J.: Differential Equations of Classical Geometry, a Qualitative Theory. In: Brazilian 27th Mathematics Colloquium. IMPA, Brazil (2009)

  21. Garcia, R., Sotomayor, J.: Historical comments on Monge’s ellipsoid and the configurations of lines of curvature on surfaces. Antiq. Math. 10, 169–182 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Gutierrez, C., Sotomayor, J.: Structurally stable configurations of lines of principal curvature. Asterisque 98–99, 195–215 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Gutierrez, C., Sotomayor, J.: Lines of curvature and umbilic points on surfaces, Lecture Notes, 18th Brazilian Math. Colloq , IMPA, (1991). Reprinted and updated as Structurally Stable Configurations of Lines of Curvature and Umbilic Points on Surfaces, Lima, Monografias del IMCA (1991)

  24. Izumiya, S., Fuster, M.C.R., Ruas, M.A.S., Tari, F.: Differential Geometry from a Singularity Theory Viewpoint. World Scientific Publishing Company, Singapore (2016)

    MATH  Google Scholar 

  25. Izumiya, S., Tari, F.: Self-adjoint operators on surfaces with a singular metric. J. Dyn. Control Syst. 16, 329–353 (2010)

    Article  MathSciNet  Google Scholar 

  26. Loftin, J.: Survey on affine spheres. In: Handbook of Geometric Analysis, No. 2. Advanced Lectures in Mathematics (ALM), 13, pp. 161–191. International Press, Somerville (2010)

  27. Li, A.-M., Simon, U., Zhao, G., Hu, Z.: Global Affine Differential Geometry of Hypersurfaces, Extended ed, 11, De Gruyter Expositions in Mathematics. De Gruyter, Berlin (2015)

    Book  Google Scholar 

  28. Martínez, A., Milán, F.: Improper affine spheres and the Hessian one equation. Differ. Geom. Appl. 54(part A), 81–90 (2017)

    Article  MathSciNet  Google Scholar 

  29. Monge, G.: Sur les lignes de courbure de la surface de l’ellipsoide. Journal de l’École Polytechnique IIeme cahier, cours de Floréal an III (around 1795), 145 (1795)

  30. Nabarro, A.C., Tari, F.: Families of curve congruences on Lorentzian surfaces and pencils of quadratic forms. Proc. R. Soc. Edinb. Sec. A 141A, 655–672 (2011)

    Article  MathSciNet  Google Scholar 

  31. Nomizu, K., Sasaki, T.: Affine Differential Geometry, Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  32. Su, B.: On the theory of lines of curvature of the surfaces. Tohoku Math. J. 30(First Series), 457–467 (1929)

    MATH  Google Scholar 

  33. Su, B.: Affine Differential Geometry. Routledge, Abingdon (1983)

    MATH  Google Scholar 

  34. Tari, F.: On pairs of geometric foliations on a cross-cap. Tohoku Math. J. 59, 233–258 (2007)

    Article  MathSciNet  Google Scholar 

  35. Tari, F.: Self-adjoint operators on surfaces in \({\mathbb{R}}^n\). Differ. Geom. Appl. 27, 296–306 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anoynomus referee for the carefully reading and for several useful comments. This work was partially supported by PRONEX/ CNPq/ FAPEG Grant 201710267000508. The first author is supported by the CAPES project Grant Number \(88887.136371/2017-00-465591/2014-0\)-INCT de Matemática, during a post-doctoral period at IME-UFG, Goiânia, Brazil. The second and third authors are fellows of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barajas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barajas, M., Craizer, M. & Garcia, R. Lines of Affine Principal Curvatures of Surfaces in 3-Space. Results Math 75, 32 (2020). https://doi.org/10.1007/s00025-020-1158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-1158-9

Mathematics Subject Classification

Keywords

Navigation