Skip to main content
Log in

On Double-k-Systems of Spheres

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

An oriented sphere in \({\mathbb {R}}^n\) is a sphere for which one side (inside or outside) is distinguished as its positive side. Two oriented spheres are said to be properly tangent if they are tangent and the positive side of one sphere is contained in the positive side of the other. A set of 2k spheres \(\{\alpha _1,\dots ,\alpha _k,\beta _1,\dots ,\beta _k\}\) in \({\mathbb {R}}^n\) is called a double-k-system in \({\mathbb {R}}^n\) if \(\alpha _i\) and \(\beta _j\) are properly tangent for \(i\ne j\), and no other pair in the set is properly tangent. It is known that if a double-k-system exists in \({\mathbb {R}}^n\) then \(k\le n+3\), and that for every n there is a double-\((n+2)\)-system in \({\mathbb {R}}^n\). Moreover, in \({\mathbb {R}}^3\) there is a double-6-system, and in \({\mathbb {R}}^1\) no double-4-system exists. In this paper, we show that there is no double-5-system in the plane, which answers a problem posed in Maehara and Tokushige (Eur J Comb 30:1337–1351, 2009). We also derive a few related results in dimensions \(n>3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aumann, G.: Kreisgeometrie - eine elementare Einführung. Springer, Berlin (2015)

    MATH  Google Scholar 

  2. Coolidge, J.L.: A Treatise on the Circle and the Sphere. Clarendon Press, Oxford (1916)

    MATH  Google Scholar 

  3. Berger, M.: Geometry, Part I. Springer, Berlin (1987)

    Book  Google Scholar 

  4. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)

    MATH  Google Scholar 

  5. Grace, J.H.: Circles, spheres, and linear complexes. Trans. Camb. Philos. Soc. 14, 153–190 (1898)

    Google Scholar 

  6. Grace, J.H.: Tetrahedra in relation to spheres and quadrics. Lond. Math. Soc. Proc. 17, 259–271 (1919). (JFM 47.0612.01)

    MathSciNet  MATH  Google Scholar 

  7. Henderson, A.: The Twenty-Seven Lines upon the Cubic Surface. Hafner Publishing Company, New York (1911)

    MATH  Google Scholar 

  8. Hilbert, D., Cohn-Vossen, S.: Geometry and Imagination (P. Neményi, trans.). Chelsea, New York (1952)

    MATH  Google Scholar 

  9. Johnson, R.A.: Advanced Euclidean Geometry. Dover, New York (1960)

    Google Scholar 

  10. Maehara, H., Martini, H.: Bipartite sets of spheres and Casey-type theorems. Results Math. 74, Art. 47 (2019)

    Article  MathSciNet  Google Scholar 

  11. Maehara, H., Martini, H.: Tangent spheres of tetrahedra and a theorem of Grace. Am. Math. Mon. (to appear)

  12. Maehara, H., Tokushige, N.: On a special arrangement of spheres. Ryukyu Math. J. 19, 15–24 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Maehara, H., Tokushige, N.: From line-systems to sphere-systems—Schläfli’s double six, Lie’s line-sphere transformation, and Grace’s theorem. Eur. J. Comb. 30, 1337–1351 (2009)

    Article  Google Scholar 

  14. Pedoe, D.: Circles—A Mathematical View. Dover, New York (1979)

    MATH  Google Scholar 

  15. Pedoe, D.: Geometry—A Comprehensive Course. Dover, New York (1988)

    MATH  Google Scholar 

  16. Rosenfeld, R.A., Yaglom, I.M.: Mehrdimensionale Räume. In: Enzyklopädie der Elementarmathematik V \((\)Geometrie\()\), Deutscher Verlag der Wissenschaften, Berlin (1971)

  17. Schläfli, L.: An attempt to determine thetwenty-seven lines upon a surface of third order and to derive such surfaces, in reference to the reality of the lines upon the surface. Quart. J. Pure Appl. Math. 2, 110–120 (1858)

    Google Scholar 

  18. Schwerdtfeger, H.: Geometry of Complex Numbers. Dover, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Maehara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maehara, H., Martini, H. On Double-k-Systems of Spheres. Results Math 75, 114 (2020). https://doi.org/10.1007/s00025-020-01246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01246-9

Keywords

Mathematics Subject Classification

Navigation