Skip to main content
Log in

A Bohr–Jessen Type Theorem for the Epstein Zeta-Function: II

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let Q be a positive definite quadratic matrix \(n\times n\), and \(Q[{\underline{x}}]= {\underline{x}}^{\mathrm {T}} Q {\underline{x}}\). The Epstein zeta-function \(\zeta (s; Q)\), \(s=\sigma +it\), is defined, for \(\sigma >\tfrac{n}{2}\), by the series

$$\begin{aligned} \zeta (s; Q)=\sum _{{\underline{x}}\in {\mathbb {Z}}^n\setminus \{{\underline{0}}\}} (Q[{\underline{x}}])^{-s}, \end{aligned}$$

and is meromorphically continued to the whole complex plane. In the paper, we prove, for \(\sigma >\tfrac{n-1}{2}\), a discrete limit theorem on the weak convergence, as \(N\rightarrow \infty \), of

$$\begin{aligned} \frac{1}{N+1} \# \left\{ 0\leqslant k\leqslant N: \zeta (\sigma +ikh; Q)\in A\right\} , \quad A\in {\mathcal {B}}({\mathbb {C}}), \end{aligned}$$

for every fixed \(h>0\). Two cases depending on the arithmetic nature of h are investigated, and the explicit form of the limit measure is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagchi, B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph.D. Thesis. Indian Statistical Institute, Calcutta (1981)

  2. Billingsley, P.: Convergence of Probability Measures, p. 253. Willey, New York (1968)

    MATH  Google Scholar 

  3. Epstein, P.: Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56, 615–644 (1903)

    Article  MathSciNet  Google Scholar 

  4. Fomenko, O.M.: Order of the Epstein zeta-function in the critical strip. J. Math. Sci. 110(6), 3150–3163 (2002)

    Article  MathSciNet  Google Scholar 

  5. Hecke, E.: Über Modulfunktionen und die Dirichletchen Reihen mit Eulerscher Produktentwicklung. I, II. Math. Ann. 114(1–28), 316–351 (1937)

    Article  MathSciNet  Google Scholar 

  6. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17, p. 259. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  7. Laurinčikas, A., Macaitienė, R.: A Bohr–Jessen type theorem for the Epstein zeta-function. Results Math. 73, 148 (2018)

    Article  MathSciNet  Google Scholar 

  8. Laurinčikas, A., Matsumoto, K., Steuding, J.: Discrete universality of \(L\)-functions of new forms. II. Lith. Math. J. 56(2), 207–218 (2016)

    Article  MathSciNet  Google Scholar 

  9. Montgomery, H.L.: Topics in Multiplicative Number Theory, p. 178. Springer, Berlin (1971)

    Book  Google Scholar 

  10. Morris, S.A.: Pontryagin duality and the structure of locally compact Abelian groups. London Mathematical Society Lecture Note Series, vol. 29, p. 131. Cambridge University Press, Cambridge (1977)

    Book  Google Scholar 

  11. Nakamura, T., Pańkowski, Ł.: On zeros and \(c\)-values of Epstein zeta-functions. Šiauliai Math. Semin. 8(16), 181–195 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95, 2nd edn, p. 636. Springer, Berlin (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for useful comments and remarks. The research of the first author is funded by the European Social Fund to the activity “Improvement of researchers’ qualification by implementing world-class R&D Projects” of Measure No. 09.3.3-LMT-K-712-01-0037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Macaitienė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurinčikas, A., Macaitienė, R. A Bohr–Jessen Type Theorem for the Epstein Zeta-Function: II. Results Math 75, 25 (2020). https://doi.org/10.1007/s00025-019-1151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1151-3

Mathematics Subject Classification

Keywords

Navigation