Skip to main content

f-Biharmonic Submanifolds of Generalized Space Forms

Abstract

We study f-biharmonic submanifolds in both generalized complex and Sasakian space forms. We prove necessary and sufficient conditions for f-biharmonicity in the general case and many particular cases. Some geometric estimates as well as non-existence results are also obtained.

This is a preview of subscription content, access via your institution.

References

  1. Alegre, P., Blair, D.E., Carriazo, A.: Generalized Sasakian space forms. Isr. J. Math. 141, 157–183 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alegre, P., Carriazo, A.: Generalized Sasakian space forms and conformal change of the metric. Results Math. 59(3), 485–493 (2011)

    Article  MathSciNet  Google Scholar 

  3. Alegre, P., Carriazo, A.: Structures on generalized Sasakian space forms. Differ. Geom. Appl. 26, 656–666 (2008)

    Article  MathSciNet  Google Scholar 

  4. Balmuş, A., Montaldo, S., Oniciuc, C.: On the biharmonicity of pseudo-umbilical and PNMC submanifolds in spheres and their type. Ark. Mat. 51, 197–221 (2013)

    Article  MathSciNet  Google Scholar 

  5. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  6. Caddeo, R., Montaldo, S., Piu, P.: On biharmonic maps. Contemp. Math. 288, 286–290 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics 1. World Scientific Publishing Co., Singapore (1984)

    Book  Google Scholar 

  8. Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Chen, B. Y.: Recent developments of biharmonic conjecture and modified biharmonic conjectures. In: Pure and Applied Differential Geometry, Proceedings of the Conference PADGE 2012, pp. 81–90. Shaker Verlag, Aachen (2013)

  10. De, U.C., De, K.: On a class of three-dimensional trans-Sasakian manifolds. Commun. Korean Math. Soc. 27(4), 795–808 (2012)

    Article  MathSciNet  Google Scholar 

  11. Derdzinski, A.: Exemples de métriques de Kähler et d’Einstein auto-duales sur le plan complexe, Géométrie riemannienne en dimension 4, (Séminaire Arthur Besse 1978/79), pp. 334–346. Cedic/Fernand Nathan, Paris (1981)

    Google Scholar 

  12. Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps, CBMS, 50. American Mathematical Society, Philadelphia (1983)

    Book  Google Scholar 

  13. Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \({{\mathbb{C}}} P^n\). Math. Z. 266, 505–531 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pac. J. Math. 240(1), 85–107 (2009)

    Article  MathSciNet  Google Scholar 

  15. Fetcu, D., Oniciuc, C., Rosenberg, H.: Biharmonic submanifolds with parallel mean curvature in \({\mathbb{S}}^n\times {\mathbb{R}}\). J. Geom. Anal. 23(4), 2158–2176 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ģüvenç, Ş., Özgür, C.: On the characterization of \(f\)-biharmonic legendre curves in Sasakian space forms. Filomat 31(3), 639–648 (2017)

    Article  MathSciNet  Google Scholar 

  17. Jiang, G.Y.: 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7(4), 389–402 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Karaca, F., Özgür, C.: f-Biharmonic and bi-f-harmonic submanifolds of product spaces. Sarajevo J. Math. 13(1), 115–129 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Roumanie 39, 183–198 (1996)

    MATH  Google Scholar 

  20. Liang, T., Ou, Y.-L.: Biharmonic hypersurfaces in a conformally flat space. Results Math. 64, 91–104 (2013)

    Article  MathSciNet  Google Scholar 

  21. Wei-Jun, Lu: On f-biharmonic maps between Riemannian manifolds. Sci. China Math. 58(7), 1483–1498 (2015)

    Article  MathSciNet  Google Scholar 

  22. Marrero, J.C.: Local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992)

    Article  MathSciNet  Google Scholar 

  23. Olszak, Z.: On the existence of generalized complex space forms. Isr. J. Math. 65(2), 214–218 (1989)

    Article  MathSciNet  Google Scholar 

  24. Ou, Y.-L., Tang, L.: The generalized Chen’s conjecture on biharmonic submanifolds is false. Mich. Math. J. 61, 531–542 (2012)

    Article  Google Scholar 

  25. Ou, Y.-L.: Some recent progress of biharmonic submanifolds. Contemp. Math. 674, 127–139 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ou, Y.-L.: On f-biharmonic maps and f-biharmonic submanifolds. Pac. J. Math. 271, 461–477 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ou, Y.-L.: f-Biharmonic maps and f-biharmonic submanifolds II. J. Math. Anal. Appl. 455, 1285–1296 (2017)

    Article  MathSciNet  Google Scholar 

  28. Oubina, J.: New classes of almost contact metric structures. Publ. Math. 32, 187–193 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Roth, J.: A note on biharmonic submanifolds of product spaces. J. Geom. 104, 375–381 (2013)

    Article  MathSciNet  Google Scholar 

  30. Roth, J., Upadhyay, A.: Biharmonic submanifolds of generalized space forms. Differ. Geom. Appl. 50, 88–104 (2017)

    Article  MathSciNet  Google Scholar 

  31. Tricerri, F., Vanhecke, L.: Curvature tensors on almost Hermitian manifolds. Trans. Am. Math. Soc. 267(2), 365–397 (1981)

    Article  MathSciNet  Google Scholar 

  32. Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics, vol. 3. World Scientific Publishing Co., Singapore (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

Second author is supported by National Post-doctoral Fellowship of Science and Engineering Research Board (File no. PDF/2017/001165), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhitosh Upadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roth, J., Upadhyay, A. f-Biharmonic Submanifolds of Generalized Space Forms. Results Math 75, 20 (2020). https://doi.org/10.1007/s00025-019-1142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1142-4

Keywords

  • f-biharmonic submanifolds
  • generalized complex space forms
  • generalized Sasakian space forms

Mathematics Subject Classification

  • 53C42
  • 53C43