Abstract
We study f-biharmonic submanifolds in both generalized complex and Sasakian space forms. We prove necessary and sufficient conditions for f-biharmonicity in the general case and many particular cases. Some geometric estimates as well as non-existence results are also obtained.
This is a preview of subscription content, access via your institution.
References
Alegre, P., Blair, D.E., Carriazo, A.: Generalized Sasakian space forms. Isr. J. Math. 141, 157–183 (2004)
Alegre, P., Carriazo, A.: Generalized Sasakian space forms and conformal change of the metric. Results Math. 59(3), 485–493 (2011)
Alegre, P., Carriazo, A.: Structures on generalized Sasakian space forms. Differ. Geom. Appl. 26, 656–666 (2008)
Balmuş, A., Montaldo, S., Oniciuc, C.: On the biharmonicity of pseudo-umbilical and PNMC submanifolds in spheres and their type. Ark. Mat. 51, 197–221 (2013)
Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203. Birkhäuser, Boston (2002)
Caddeo, R., Montaldo, S., Piu, P.: On biharmonic maps. Contemp. Math. 288, 286–290 (2001)
Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics 1. World Scientific Publishing Co., Singapore (1984)
Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)
Chen, B. Y.: Recent developments of biharmonic conjecture and modified biharmonic conjectures. In: Pure and Applied Differential Geometry, Proceedings of the Conference PADGE 2012, pp. 81–90. Shaker Verlag, Aachen (2013)
De, U.C., De, K.: On a class of three-dimensional trans-Sasakian manifolds. Commun. Korean Math. Soc. 27(4), 795–808 (2012)
Derdzinski, A.: Exemples de métriques de Kähler et d’Einstein auto-duales sur le plan complexe, Géométrie riemannienne en dimension 4, (Séminaire Arthur Besse 1978/79), pp. 334–346. Cedic/Fernand Nathan, Paris (1981)
Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps, CBMS, 50. American Mathematical Society, Philadelphia (1983)
Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \({{\mathbb{C}}} P^n\). Math. Z. 266, 505–531 (2010)
Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pac. J. Math. 240(1), 85–107 (2009)
Fetcu, D., Oniciuc, C., Rosenberg, H.: Biharmonic submanifolds with parallel mean curvature in \({\mathbb{S}}^n\times {\mathbb{R}}\). J. Geom. Anal. 23(4), 2158–2176 (2013)
Ģüvenç, Ş., Özgür, C.: On the characterization of \(f\)-biharmonic legendre curves in Sasakian space forms. Filomat 31(3), 639–648 (2017)
Jiang, G.Y.: 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7(4), 389–402 (1986)
Karaca, F., Özgür, C.: f-Biharmonic and bi-f-harmonic submanifolds of product spaces. Sarajevo J. Math. 13(1), 115–129 (2017)
Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Roumanie 39, 183–198 (1996)
Liang, T., Ou, Y.-L.: Biharmonic hypersurfaces in a conformally flat space. Results Math. 64, 91–104 (2013)
Wei-Jun, Lu: On f-biharmonic maps between Riemannian manifolds. Sci. China Math. 58(7), 1483–1498 (2015)
Marrero, J.C.: Local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992)
Olszak, Z.: On the existence of generalized complex space forms. Isr. J. Math. 65(2), 214–218 (1989)
Ou, Y.-L., Tang, L.: The generalized Chen’s conjecture on biharmonic submanifolds is false. Mich. Math. J. 61, 531–542 (2012)
Ou, Y.-L.: Some recent progress of biharmonic submanifolds. Contemp. Math. 674, 127–139 (2016)
Ou, Y.-L.: On f-biharmonic maps and f-biharmonic submanifolds. Pac. J. Math. 271, 461–477 (2014)
Ou, Y.-L.: f-Biharmonic maps and f-biharmonic submanifolds II. J. Math. Anal. Appl. 455, 1285–1296 (2017)
Oubina, J.: New classes of almost contact metric structures. Publ. Math. 32, 187–193 (1985)
Roth, J.: A note on biharmonic submanifolds of product spaces. J. Geom. 104, 375–381 (2013)
Roth, J., Upadhyay, A.: Biharmonic submanifolds of generalized space forms. Differ. Geom. Appl. 50, 88–104 (2017)
Tricerri, F., Vanhecke, L.: Curvature tensors on almost Hermitian manifolds. Trans. Am. Math. Soc. 267(2), 365–397 (1981)
Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Mathematics, vol. 3. World Scientific Publishing Co., Singapore (1984)
Acknowledgements
Second author is supported by National Post-doctoral Fellowship of Science and Engineering Research Board (File no. PDF/2017/001165), India.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Roth, J., Upadhyay, A. f-Biharmonic Submanifolds of Generalized Space Forms. Results Math 75, 20 (2020). https://doi.org/10.1007/s00025-019-1142-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00025-019-1142-4
Keywords
- f-biharmonic submanifolds
- generalized complex space forms
- generalized Sasakian space forms
Mathematics Subject Classification
- 53C42
- 53C43