Skip to main content
Log in

Embeddings and Ambient Automorphisms of the Pappus Configuration

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We classify embeddings (i.e., “labeled drawings”) of the Pappus configuration in projective planes over commutative fields, up to projective equivalence. Using pairs of field elements, we parameterize the space of classes of projectively equivalent embeddings, and then explicitly determine the group of ambient automorphisms (or dualities) for any given parameter pair, i.e., the subgroup of the group of all automorphisms (and dualities) of the abstract configuration that are induced by projective collineations (or dualities) leaving invariant the image under any embedding in the given class. It turns out that the existence of an ambient duality implies an ambient polarity. We show that these parameter pairs can be interpreted as pairs of cross ratios associated in a rather natural way with the embedded configuration. The number of equivalence classes of embeddings in a projective plane over a given finite field is determined. The groups that occur as full ambient groups are identified in the subgroup lattice of the full automorphism group of the abstract configuration. Finally, we use our results to understand embeddings of the Möbius–Kantor configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In the German original ([10, p. 117]): “[...] so können wir sagen, daß der Satz von Pascal der einzig wesentliche Schnittpunktsatz der Ebene ist, daß also die Konfiguration \((9_3)_1\) die wichtigste Figur der ebenen Geometrie darstellt”.

  2. See [26, 3.1]. The order of \({\text {Aut}}_{}(\Pi )\) has already been determined by Schoenflies [25, p. 59]; its isomorphism type has been noted in Levi’s 1929 monograph [16, pp. 108 ff]. A different description of the group is given in [4, Section 4, pp. 261–266].

  3. For embeddings into \(\mathbb {P}_{2}(\mathbb {R})\) or \(\mathbb {P}_{2}(\mathbb {C})\), this has been observed already by Levi [16, pp. 116], see also [5, p. 276]. For embeddings into \(\mathbb {P}_{2}(\mathbb {R})\) such that no triad is collinear and no parallel class is confluent, Kommerell [14, p. 32] reports that he has not found any ambient automorphisms apart from those in \(\langle \tau \rangle \).

  4. The authors are grateful to Peter Müller at Würzburg for providing this example plus the theory necessary to understand it in context.

  5. The action of \(\overline{\Gamma }/\mathrm {Z}\) on \(\mathbb {A}_{2}(\mathbb {F}_3)\) may be helpful here, see 5.7.

  6. Some of these embeddings into \(\mathbb {P}_{2}(\mathbb {R})\) have been noted by Coxeter in [4, p. 267–269] and [5, p. 270–273].

  7. See https://archive.org/details/pappialexandrin01hultgoog/page/n409

    (accessed on October 15, 2019).

References

  1. Baer, R.: Linear Algebra and Projective Geometry. Academic Press Inc., New York (1952)

    MATH  Google Scholar 

  2. Bohne, E., Möller, R.: Über die Anzahl projektiver Pappos-Konfigurationen in endlichen Desarguesschen affinen Inzidenzebenen. Beiträge Algebra Geom. 17, 23–30 (1984)

    MATH  Google Scholar 

  3. Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56, 413–455 (1950)

    Article  MathSciNet  Google Scholar 

  4. Coxeter, H.S.M.: The Pappus configuration and the self-inscribed octagon. I. Indag. Math. 39, 256–269 (1977)

    Article  MathSciNet  Google Scholar 

  5. Coxeter, H.S.M.: The Pappus configuration and the self-inscribed octagon. II. Indag. Math. 39, 270–284 (1977)

    Article  MathSciNet  Google Scholar 

  6. Coxeter, H.S.M.: The Pappus configuration and the self-inscribed octagon. III. Indag. Math. 39, 285–300 (1977)

    Article  MathSciNet  Google Scholar 

  7. Dugas, M., Göbel, R.: Automorphism groups of fields. Manuscr. Math. 85, 227–242 (1994)

    Article  MathSciNet  Google Scholar 

  8. Frobenius, F.G.: Ueber die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul. J. Reine Angew. Math. 101, 273–299 (1887)

    MathSciNet  MATH  Google Scholar 

  9. Grundhöfer, T., Stroppel, M.J., Van Maldeghem, H.: Embeddings ofhermitian unitals into pappian projective planes. Aequ. Math. 93, 927–953 (2019)

    Article  Google Scholar 

  10. Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie, 1st edn. Springer, Berlin (1932)

    Book  Google Scholar 

  11. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea Publishing Company, New York (Translated by P. Neményi) (1952)

  12. Kantor, S.: Ueber die Configurationen \((3, 3)\) mit den Indices \(8, 9\) und ihren Zusammenhang mit den Curven dritter Ordnung. Akad. Wiss. Wien, Math.-Natur. Kl. Sitzungsber. IIa 84 (1881), 915–932

  13. Knarr, N., Stroppel, B., Stroppel, M.J.: Desargues configurations: minors and ambient automorphisms. J. Geom. 107, 357–378 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kommerell, K.: Die Pascalsche Konfiguration \(9_3\). Deutsch. Math. 6, 16–32 (1941)

    MathSciNet  MATH  Google Scholar 

  15. Lenz, H.: Vorlesungen über projektive Geometrie. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, Band 30. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig (1965)

  16. Levi, F.W.: Geometrische Konfigurationen. Mit einer Einführung in die kombinatorische Flächentopologie. S. Hirzel, Leipzig (1929)

  17. Mielants, W.: Pappus-Pascal configurations in Pascalian projective planes. In: Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Univ. Perugia, Perugia, 1970), Ist. Mat., Univ. Perugia, Perugia, pp. 339–350 (1971)

  18. Möbius, A.F.: Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heißen? J. Reine Angew. Math. 3, 273–278 (1828)

    MathSciNet  Google Scholar 

  19. Neumann, P.M.: A lemma that is not Burnside’s. Math. Sci. 4, 133–141 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Pappus: Pappi Alexandrini collectionis quae supersunt, ed. Friedrich Otto Hultsch, vol. 2. Apud Weidmannos (1877)

  21. Pappus of Alexandria: Book 7 of the Collection, vol. 8 of Sources in the History of Mathematics and Physical Sciences. Springer, New York (Part 1. Introduction, text, and translation, Part 2. Commentary, index, and figures, Edited and with translation and commentary by Alexander Jones) (1986)

  22. Pickert, G.: Projektive Ebenen, vol. LXXX ofDie Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Springer, Berlin (1955)

  23. Samuel, P.: Projective geometry. Undergraduate Texts in Mathematics. Springer-Verlag, New York (Translated from the French by Silvio Levy, Readings in Mathematics) (1988)

    Google Scholar 

  24. Schmelzer, M.: Automorphismen von Körpern und Strukturen. Results Math. 25, 357–369 (1994)

    Article  MathSciNet  Google Scholar 

  25. Schönflies, A.M.: Ueber die regelmässigen Configurationen \(n^3\). Math. Ann. 31, 43–69 (1888)

    Article  MathSciNet  Google Scholar 

  26. Stroppel, M.J.: Generalizing the Pappus and Reye configurations. Aust. J. Combin. 72, 249–272 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Stroppel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knarr, N., Stroppel, M.J. Embeddings and Ambient Automorphisms of the Pappus Configuration. Results Math 74, 196 (2019). https://doi.org/10.1007/s00025-019-1115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1115-7

Keywords

Mathematics Subject Classification

Navigation