Results in Mathematics

, 74:125 | Cite as

Operators Related to the Reconstruction Property in Banach Spaces

  • Jyoti
  • Lalit Kumar VashishtEmail author
  • Geetika Verma


Casazza and Christensen introduced the notion of the reconstruction property in separable Banach spaces, which is related to some deep concepts in Banach space theory. We discuss some types of operators associated with the reconstruction property and its related Banach frames in Banach spaces. It is shown that if a separable Banach space \(\mathcal {X}\) admits the reconstruction property, then there exists an injective operator from an operator space into a sequence space related with the reconstruction property for \(\mathcal {X}\). Compact linear operators associated with the reconstruction property are discussed. Finally, we give two different sufficient conditions for Banach frames associated with the reconstruction property in terms of operators.


Frames Banach frames reconstruction property perturbation 

Mathematics Subject Classification

42C15 42C30 42C40 



  1. 1.
    Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123(6), 1661–1668 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Casazza, Casazza, P.G.: Approximation properties. In: Handbook on the Geometry of Banach Spaces, vol. 1, pp. 271–316. North Holland, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Birkhäuser, Boston (2012)zbMATHGoogle Scholar
  4. 4.
    Casazza, P.G., Dilworth, S.J., Odell, E., Schlumprecht, Th, Zsák, A.: Coefficient quantization for frames in Banach spaces. J. Math. Anal. Appl. 348(1), 66–86 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Casazza, P.G., Christensen, O.: The reconstruction property in Banach spaces and a perturbation theorem. Can. Math. Bull. 51, 348–358 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Casazza, P.G., Kalton, N.J.: Generalizing the Paley–Wiener perturbation theory for Banach spaces. Proc. Am. Math. Soc. 127(2), 519–527 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Christensen, O.: An Introduction to Frames and Riesz Bases, Second edn. Birkhäuser, Boston (2016)zbMATHGoogle Scholar
  9. 9.
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless non-orthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (2012)Google Scholar
  11. 11.
    Duffin, R.J., Schaeffer, A.C.: A class of non-harmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–41 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Heil, C.: A Basis Theory Primer, Expanded edn. Birkhäuser, Boston (2011)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kaushik, S.K., Vashisht, L.K., Khattar, G.: Reconstruction property and frames in Banach spaces. Palest. J. Math. 3(1), 11–26 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Khattar, G., Vashisht, L.K.: The reconstruction property in Banach spaces generated by matrices. Adv. Pure Appl. Math. 5(3), 151–160 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Khattar, G., Vashisht, L.K.: Some types of convergence related to the reconstruction property in Banach spaces. Banach J. Math. Anal. 9(2), 253–275 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Khattar, G.: On the reconstruction property and frames in Banach spaces. Ph.D. thesis, University of Delhi (2015)Google Scholar
  18. 18.
    Ruckle, W.: Decompositions of operator spaces. Rev. Roum. Math. Pures Appl. 15, 119–134 (1970)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Singer, I.: Bases in Banach spaces, vol. I. Springer, Berlin (1981)zbMATHCrossRefGoogle Scholar
  20. 20.
    Vashisht, L.K.: Banach frames generated by compact operators associated with a boundary value problem. TWMS J. Pure Appl. Math. 6(2), 254–258 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Verma, G., Vashisht, L.K., Singh, M.: On excess of retro Banach frames. J. Contemp. Math. Anal. 54(3), 129–132 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelhiDelhiIndia
  2. 2.Centre for Industrial and Applied Mathematics, School of Information Technology and Mathematical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations