Skip to main content
Log in

Schwarz-Pick Type Estimates for Gradients of Pluriharmonic Mappings of the Unit Ball

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to find generalized Schwarz-Pick type inequalities for pluriharmonic functions f of the unit ball \({\mathbb {B}}^n\). The estimates for the gradient of |f| and f are given as follows:

$$\begin{aligned} \big |\nabla |f|(z)\big |\le \frac{4\sqrt{n}}{\pi (1-|z|)}, \ \ \ z\in {\mathbb {B}}^n \end{aligned}$$

and

$$\begin{aligned} |\nabla f(z)|^2\le \frac{2n(1-|f(z)|^2)}{1-|z|}, \ \ \ z\in {\mathbb {B}}^n. \end{aligned}$$

Moreover, by additional assuming the quasiregularity of f, some additional estimates are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer, New York (1992)

    Book  Google Scholar 

  2. Chen, S., Ponnusamy, S., Wang, X.: Equivalent moduli of continuity, Bloch’s theorem for pluriharmonic mappings in\({\mathbb{B}}^n\). Proc. Indian Acad. Sci. Earth Planet. Sci. 122, 583–595 (2012)

    Article  Google Scholar 

  3. Chen, S., Rasila, A.: Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk. Ill. J. Math. 58, 1015–1024 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Ponnusamy, S., Wang, X.: Stable geometric properties of pluriharmonic and biholomorphic mappings, and Landau–Bloch’s theorem. Monheft. Math. 177, 33–51 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Chen, S., Ponnusamy, S., Wang, X.: Univalence criteria and Lipschitz-type spaces on pluriharmonic mappings. Math. Scand. 116, 171–181 (2015)

    Article  MathSciNet  Google Scholar 

  6. Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38, 829–840 (1989)

    Article  MathSciNet  Google Scholar 

  7. Duren, P.: Harmonic Mappings in The Plane. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Duren, P., Hamada, H., Kohr, G.: Two-point distortion theorems for harmonic and pluriharmonic mappings. Trans. Am. Math. Soc. 363, 6197–6218 (2011)

    Article  MathSciNet  Google Scholar 

  9. Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9, 101–105 (1959)

    Article  MathSciNet  Google Scholar 

  10. Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Am. Math. Soc. 140, 161–165 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kalaj, D.: On harmonic functions on surfaces with positive Gauss curvature and Schwarz lemma. Rocky Mt. J. Math. 44, 1585–1594 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kalaj, D.: Heinz-Schwarz inequalities for harmonic mappings in the unit ball. Ann. Acad. Sci. Fenn. Ser. A1 Math. 41, 457–464 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kalaj, D.: Schwarz lemma for holomorphic mappings in the unit ball. Glasg. Math. J. 60, 219–224 (2018)

    Article  MathSciNet  Google Scholar 

  14. Kranz, S.: Function Theory of Several Complex Variables, Wadsworth Brooks/Cole Mathematics Series, 2nd edn (1992)

  15. Kneźević, M., Mateljević, M.: On the quasi-isometries of harmonic quasiconformal mappings. J. Math. Anal. Appl. 334, 404–413 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    Article  MathSciNet  Google Scholar 

  17. Liu, T., Tang, X.: Schwarz lemma at the boundary of strongly pseudoconvex domain in \(C^n\). Math. Ann. 366, 655–666 (2016)

    Article  MathSciNet  Google Scholar 

  18. Pavlović, M.: A Schwarz lemma for the modulus of a vector-valued analytic function. Ann. Acad. Sci. Fenn. Ser. A1 Math. 32, 579–594 (2007)

    Google Scholar 

  19. Rudin, W.: Function Theory in the Unit Ball of \({\mathbb{C}}^n\). Springer, Berlin (1980)

    Book  Google Scholar 

  20. Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988)

    Book  Google Scholar 

  21. Wang, J., Liu, T.: The Roper-Suffridge extension operator and its applications to convex mappings in \( {{\mathbb{C}}}^{2}\). Trans. Am. Math. Soc. 370, 7743–7759 (2018)

    Article  Google Scholar 

  22. Wang, G., Vuorinen, M.: The visual angle metric and quasiregular maps. Proc. Am. Math. Soc. 144, 4899–4912 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wu, H.: Normal families of holomorphic mappings. Acta. Math. 119, 192–233 (1967)

    Article  MathSciNet  Google Scholar 

  24. Zhu, J.: Some estimates for harmonic mappings with given boundary function. J. Math. Anal. Appl. 411, 631–638 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for a number of corrections and helpful suggestions on improving this paper.

Funding

The research of the author was supported by NSFs of China (No. 11501220), NSFs of Fujian Province (No. 2016J01020), and the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University (ZQN-PY402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JF. Schwarz-Pick Type Estimates for Gradients of Pluriharmonic Mappings of the Unit Ball. Results Math 74, 114 (2019). https://doi.org/10.1007/s00025-019-1037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1037-4

Mathematics Subject Classification

Keywords

Navigation