Skip to main content
Log in

Degenerate Miller–Paris Transformations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Important new transformations for the generalized hypergeometric functions with integral parameter differences have been discovered some years ago by Miller and Paris and studied in detail in a series of papers by a number of authors. These transformations fail if the free bottom parameter is greater than a free top parameter by a small positive integer. In this paper we fill this gap in the theory of Miller–Paris transformations by computing the limit cases of these transformations in such previously prohibited situations. This leads to a number of new transformation and summation formulas including extensions of the Karlsson–Minton theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials, Cambridge Studies in Advanced Mathematics, vol. 153. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  3. Karp, D., Prilepkina, E.: Extensions of Karlsson–Minton summation theorem and some consequences of Miller–Paris transformations. Integral Transforms Spec. Funct. 29(12), 955–970 (2018)

    Article  MathSciNet  Google Scholar 

  4. Karp, D., Prilepkina, E.: Alternative approach to Miller–Paris transformations and their extensions, submitted to Transmutation operators and applications, Trends in Mathematics, Springer, (2019). Preprint, arXiv:1902.04936

  5. Karp, D.B., Melnikov, Yu.B., Turuntaeva, I.V.: On the properties of special functions generating the kernels of certain integral operators. J. Comput. Appl. Math., submitted, (2018). Preprint, arXiv:1804.03982

  6. Kim, Y.S., Rathie, A.K., Paris, R.B.: An alternative proof of the extended Saalschütz summation theorem for the \({}_{r+3}F_{r+2}(1)\) series with applications. Math. Methods Appl. Sci. 38(18), 4891–4900 (2015)

    Article  MathSciNet  Google Scholar 

  7. Kim, Y.S., Rathie, A.K., Paris, R.B.: On two Thomae-type transformations for hypergeometric series with integral parameter differences. Math. Commun. 19, 111–118 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Krattenthaler, C., Srinivasa Rao, K.: Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Appl. Math. 160, 159–173 (2003)

    Article  MathSciNet  Google Scholar 

  9. Luke, Y.L.: The Special Functions and Their Approximations, vol. 1. Academic Press, Cambridge (1969)

    MATH  Google Scholar 

  10. Miller, A.R.: A summation formula for Clausen’s series \({}_3F_2(1)\) with an application to Goursat’s function \({}_2F_2(x)\). J. Phys. A Math. Gen. 38, 3541–3545 (2005)

    Article  Google Scholar 

  11. Miller, A.R., Paris, R.B.: Euler-type transformations for the generalized hypergeometric function \({}_{r+2}F_{r+1}(x)\) Z. Angew. Math. Phys. 62(1), 31–45 (2011)

    Article  MathSciNet  Google Scholar 

  12. Miller, A.R., Paris, R.B.: Clausen’s series \({}_3F_2(1)\) with integral parameter differences and transformations of the hypergeometric function \({}_2F_2(x)\). Integral Transforms Spec. Funct. 23(1), 21–33 (2012)

    Article  MathSciNet  Google Scholar 

  13. Miller, A.R., Paris, R.B.: On a result related to transformations and summations of generalized hypergeometric series. Math. Commun. 17, 205–210 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Miller, A.R., Paris, R.B.: Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mt. J. Math. 43(1), 291–327 (2013)

    Article  MathSciNet  Google Scholar 

  15. Miller, A.R., Srivastava, H.M.: Karlsson–Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transfroms Spec. Funct. 21(8), 603–612 (2010)

    Article  MathSciNet  Google Scholar 

  16. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Rao, K.S., Van der Jeugt, J., Raynal, J., Jagannathan, R., Rajeswari, V.: Group theoretical basis for the terminating \({}_3F_{2}(1)\) series. J. Phys. A Math. Gen. 25, 861–876 (1992)

    Article  Google Scholar 

  18. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series: More Special Functions, vol. 3. Gordon and Breach Science Publishers, New York (1990)

    MATH  Google Scholar 

  19. Seaborn, J.B.: Hypergeometric Functions and Their Applications. Springer, Berlin (1991)

    Book  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Professor Richard Paris for sharing his insights on the topic of this work. We are also indebted to anonymous referees for a number of useful remarks that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Karp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, D.B., Prilepkina, E.G. Degenerate Miller–Paris Transformations. Results Math 74, 94 (2019). https://doi.org/10.1007/s00025-019-1017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1017-8

Keywords

Mathematics Subject Classification

Navigation