Skip to main content
Log in

A New Approach to the Generalization of Darbo’s Fixed Point Problem by Using Simulation Functions with Application to Integral Equations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We investigate the existence of fixed points of self-mappings via simulation functions and measure of noncompactness. We use different classes of additional functions to get some general contractive inequalities. As an application of our main conclusions, we survey the existence of a solution for a class of integral equations under some new conditions. An example will be given to support our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksić, S., Kadelburg, Z., Mitrović, Z.D., Radenović, S.: A new survey: cone metric spaces. J. Int. Math. Virtual Inst. 9, 93–121 (2019)

    MathSciNet  Google Scholar 

  2. Alghamdi, M.A., Shahzad, N., Vetro, F.: Best proximity points for some classes of proximal contractions. In: Abstract and Applied Analysis, vol. 2013(713252), pp. 1–10 (2013). https://doi.org/10.1155/2013/713252

    MathSciNet  Google Scholar 

  3. Altun, I., Turkoglu, D.: A fixed point theorem for mappings satisfying a general contractive condition of operator type. J. Comput. Anal. Appl. 9, 9–14 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 8, 1082–1094 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ayerbe Toledano, J.M., Dominguez Benavides, T., López-Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Operator Theory: Advances and Applications, vol. 99. Birkhäuser, Basel (1997). https://doi.org/10.1007/978-3-0348-8920-9

    Book  Google Scholar 

  6. Chanda, A., Dey, L.K., Radenović, S.: Simulation functions: a Survey of recent results. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM (2018). https://doi.org/10.1007/s13398-018-0580-2

    Article  Google Scholar 

  7. Chandok, S., Chanda, A., Dey, L.K., Pavlović, M., Radenović, S.: Simulations functions and Geraghty type results. Bol. Soc. Parana. Mat. (3), to appear (2019)

  8. Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 24, 84–92 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Deng, G., Huang, H., Cvetković, M., Radenović, S.: Cone valued measure of noncompactness and related fixed point theorems. Bull. Int. Math. Virtual Inst. 8, 233–243 (2018)

    MathSciNet  Google Scholar 

  10. Gabeleh, M., Markin, J.: Optimum solutions for a system of differential equations via measure of noncompactness. Indag. Math. (N.S.) 29, 895–906 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gabeleh, M., Vetro, C.: A new extension of Darbo’s fixed point theorem using relatively Meir–Keeler condensing operators. Bull. Aust. Math. Soc. 98, 286–297 (2018)

    Article  MathSciNet  Google Scholar 

  12. Gohberg, I., Goldenštein, L.S., Markus, A.S.: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. Zap. Kishinevsk. Un-ta 29, 29–36 (1957)

    Google Scholar 

  13. Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)

    Article  MathSciNet  Google Scholar 

  14. Hussain, A., Kanwal, T., Mitrović, Z.D., Radenović, S.: Optimal solutions and applications to nonlinear matrix and integral equations via simulation function. Filomat 32, 6087–6106 (2018)

    Article  MathSciNet  Google Scholar 

  15. Khojasteh, F., Shukla, S., Radenović, S.: A new approach to the study of fixed point theorems via simulation functions. Filomat 29, 1189–1194 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kostić, A., Rakočević, V., Radenović, S.: Best proximity points involving simulation functions with \(w_0\)-distance. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM (2018). https://doi.org/10.1007/s13398-018-0512-1

    Article  Google Scholar 

  17. Liu, X.-L., Ansari, A.H., Chandok, S., Radenović, S.: On some results in metric spaces using auxiliary simulation functions via new functions. J. Comput. Anal. Appl. 24, 1103–1114 (2018)

    MathSciNet  Google Scholar 

  18. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)

    Article  MathSciNet  Google Scholar 

  19. Radenović, S., Chandok, S.: Simulation type functions and coincidence point results. Filomat 32, 141–147 (2018)

    Article  MathSciNet  Google Scholar 

  20. Radenović, S., Vetro, F., Vujaković, J.: An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 50, 223–230 (2017)

    Article  MathSciNet  Google Scholar 

  21. Soleimani Rad, G., Radenović, S., Dolićanin-Dekić, D.: A shorter and simple approach to study fixed point results via b-simulation functions. Iran. J. Math. Sci. Inform. 13, 97–102 (2018)

    MathSciNet  Google Scholar 

  22. Vetro, C., Vetro, F.: On the existence of at least a solution for functional integral equations via measure of noncompactness. Banach J. Math. Anal. 11, 497–512 (2017)

    Article  MathSciNet  Google Scholar 

  23. Vetro, C., Vetro, F.: The class of F-contraction mappings with a measure of noncompactness. In: Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds.) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, pp. 297–331, Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3722-1

    MATH  Google Scholar 

  24. Vetro, F.: Fixed point results for ordered S–G-contractions in ordered metric spaces. Nonlinear Anal. Model. Control 23, 269–283 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the expert referee for his/her corrections and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Gabeleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, M., Gabeleh, M. & Vetro, C. A New Approach to the Generalization of Darbo’s Fixed Point Problem by Using Simulation Functions with Application to Integral Equations. Results Math 74, 86 (2019). https://doi.org/10.1007/s00025-019-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1010-2

Keywords

Mathematics Subject Classification

Navigation