Results in Mathematics

, 74:57 | Cite as

Inequalities for Integrals of the Modified Struve Function of the First Kind II

  • Robert E. GauntEmail author
Open Access


Simple inequalities are established for integrals of the type \(\int _0^x \mathrm {e}^{-\gamma t} t^{-\nu } \mathbf {L}_\nu (t)\,\mathrm {d}t\), where \(x>0\), \(0\le \gamma <1\), \(\nu >-\frac{3}{2}\) and \(\mathbf {L}_{\nu }(x)\) is the modified Struve function of the first kind. In most cases, these inequalities are tight in certain limits. As a consequence we deduce a tight double inequality, involving the modified Struve function \(\mathbf {L}_{\nu }(x)\), for a generalized hypergeometric function.


Modified Struve function inequality integral 

Mathematics Subject Classification

Primary 33C10 26D15 



The author is supported by a Dame Kathleen Ollerenshaw Research Fellowship.


  1. 1.
    Baricz, Á., Pogány, T.K.: Integral representations and summations of modified Struve function. Acta Math. Hung. 141, 254–281 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baricz, Á., Pogány, T.K.: Functional inequalities for modified Struve functions. Proc. R. Soc. Edinb. A 144, 891–904 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baricz, Á., Ponnusamy, S., Singh, S.: Turán type inequalities for Struve functions. J. Math. Anal. Appl. 445, 971–984 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baricz, Á., Sun, Y.: Bounds for the generalized Marcum \(Q\)-function. Appl. Math. Comput. 217, 2238–2250 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, L.H.Y., Goldstein, L., Shao, Q.-M.: Normal Approximation by Stein’s Method. Springer, Berlin (2011)CrossRefGoogle Scholar
  6. 6.
    Eichelsbacher, P., Thäle, C.: Malliavin-Stein method for variance-gamma approximation on Wiener space. Electron. J. Probab. 20(123), 1–28 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gaunt, R.E.: Variance-gamma approximation via Stein’s method. Electron. J. Probab. 19(38), 1–33 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420, 373–386 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gaunt, R.E.: Inequalities for integrals of modified Bessel functions and expressions involving them. J. Math. Anal. Appl. 462, 172–190 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gaunt, R.E.: Inequalities for integrals of the modified Struve function of the first kind. Results Math. 73(65), 1–10 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gaunt, R.E.: Bounds for modified Struve functions of the first kind and their ratios. J. Math. Anal. Appl. 468, 547–566 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gaunt, R.E.: Inequalities for some integrals involving modified Bessel functions. P. Am. Math. Soc. (2019) (to appear) Google Scholar
  13. 13.
    Gaunt, R.E.: Wasserstein and Kolmogorov error bounds for variance-gamma approximation via Stein’s method I . J. Theor. Porbab. (2019).
  14. 14.
    Hurley, W.G., Wilcox, D.J.: Calculation of leakage inductance in transformer windings. IEEE Trans. Power Electron. 9, 121–126 (1994)CrossRefGoogle Scholar
  15. 15.
    Joshi, C.M., Nalwaya, S.: Inequalities for modified Struve functions. J. Indian Math. Soc. 65, 49–57 (1998)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Miles, J.W., Huppert, H.E.: Lee waves in a stratified flow. Part 4. Perturbation approximations. J. Fluid Mech. 35, 497–525 (1969)CrossRefGoogle Scholar
  17. 17.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  18. 18.
    Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality, vol. 192. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  19. 19.
    Stein, C.: A bound for the error in the normal approximation to the the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium Mathematics Statistics and Probability, vol. 2. University of California Press, Berkeley, pp. 583–602 (1972)Google Scholar
  20. 20.
    Stephens, G.L.: Scattering of plane waves by soft obstacles: anomalous diffraction theory for circular cylinders. Appl. Opt. 23, 954–959 (1984)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of MathematicsThe University of ManchesterManchesterUK

Personalised recommendations