Results in Mathematics

, 74:51 | Cite as

Remainder Padé Approximants for the Hurwitz Zeta Function

  • Marc PrévostEmail author


Following our earlier research, we use the method introduced by the author in Prévost (J Comput Appl Math 67(2):219–235, 1996) named Remainder Padé Approximant in Prévost (Constr Approx 25(1):109–123, 2007), to construct approximations of the Hurwitz zeta function. We prove that these approximations are convergent on the positive real line. Applications to new rational approximations of \(\zeta (2)\) and \(\zeta (3)\) are provided.


Padé approximants zeta function bernoulli numbers 

Mathematics Subject Classification

Primary 41A21 Secondary 41A28 11J72 



  1. 1.
    Apéry, R.: Irrationality of \(\zeta (2)\) and \(\zeta (3)\). Astérisque 61, 11–13 (1979)zbMATHGoogle Scholar
  2. 2.
    Askey, R., Wilson, J.: A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13(4), 651–655 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker, Jr., G. A., Graves-Morris, P.: Padé approximants of Encyclopedia of Mathematics and its Applications, 2nd edn, vol. 59. Cambridge University Press, Cambridge (1996)Google Scholar
  4. 4.
    Beukers, F.: A note on the irrationality of \(\zeta (2)\) and \(\zeta (3)\). Bull. London Math. Soc. 11(3), 268–272 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brezinski, C.: Padé-type approximation and general orthogonal polynomials of International Series of Numerical Mathematics, vol. 50. Birkhäuser Verlag, Basel-Boston, Mass (1980)Google Scholar
  6. 6.
    Carlitz, L.: Bernoulli and Euler numbers and orthogonal polynomials. Duke Math. J. 26, 1–15 (1959)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W., Eds. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge: With 1 CD-ROM. Windows, Macintosh and UNIX (2010)Google Scholar
  8. 8.
    Prévost, M.: A new proof of the irrationality of \(\zeta (2)\) and \(\zeta (3)\) using Padé approximants. J. Comput. Appl. Math. 67(2), 219–235 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Prévost, M., Rivoal, T.: Remainder Padé approximants for the exponential function. Constr. Approx. 25(1), 109–123 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Inc, Amsterdam (2012)zbMATHGoogle Scholar
  11. 11.
    Touchard, J.: Nombres exponentiels et nombres de Bernoulli. Canad. J. Math. 8, 305–320 (1956)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Whittaker, E. T., Watson, G. N.: A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996. (Reprint from An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th edn, 1927)Google Scholar
  13. 13.
    Wilson, J.A.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11(4), 690–701 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LMPA Joseph Liouville, Centre Universitaire de la Mi-VoixCalais CedexFrance

Personalised recommendations