Skip to main content

On Slice Polyanalytic Functions of a Quaternionic Variable

A Correction to this article was published on 09 April 2021

This article has been updated

Abstract

In this paper, we introduce the quaternionic slice polyanalytic functions and we prove some of their properties. Then, we apply the obtained results to begin the study of the quaternionic Fock and Bergman spaces in this new setting. In particular, we give explicit expressions of their reproducing kernels.

This is a preview of subscription content, access via your institution.

Change history

References

  1. Abreu, L.D., Feichtinger, H.G.: Function spaces of polyanalytic functions. In: Vasil’ev, A. (ed.) Harmonic and Complex Analysis and Its Applications. Trends in Mathematics. Birkhäuser, Basel (2014)

    Google Scholar 

  2. Alpay, D.: An Advanced Complex Analysis Problem Book. Birkhäuser, Basel (2015)

    Book  Google Scholar 

  3. Alpay, D., Colombo, F., Sabadini, I.: Slice Hyperholomorphic Schur Analysis, Operator Theory: Advances and Applications, vol. 256. Birkhäuser, Basel (2016)

    Book  Google Scholar 

  4. Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic setting. In: Bernstein, S. (ed.) Hypercomplex Analysis: New perspectives and Applications. Trends in Mathematics, pp. 43–59. Birkhäuser, Basel (2014)

    MATH  Google Scholar 

  5. Altavilla, A.: Some properties for quaternionic slice regular functions on domains without real points. Complex Var. Elliptic Equ. 60(1), 59–77 (2015)

    Article  MathSciNet  Google Scholar 

  6. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Advanced Publishing Program, London (1982)

    MATH  Google Scholar 

  7. Balk, M.: Polyanalytic Functions. Akademie-Verlag, Berlin (1991)

    MATH  Google Scholar 

  8. Colombo, F., Gonzalez-Cervantes, J.O., Sabadini, I.: Further properties of the Bergman spaces of slice regular functions. Adv. Geom. 15(4), 469–484 (2015)

    Article  MathSciNet  Google Scholar 

  9. Colombo, F., Gonzalez-Cervantes, J.O., Luna-Elizarraras, M.E., Sabadini, I., Shapiro, M.: On two approaches to the Bergman theory for slice regular functions. Adv. Hypercomplex Anal. 1, 39–54 (2013). (Springer Indam series)

    Article  MathSciNet  Google Scholar 

  10. Colombo F., Sabadini I., Struppa D.C.: Entire Slice Regular Functions. Springer Briefs in Mathematics. ISBN 978-3-319-49264-3 (2016)

  11. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions. Progress in Mathematics, vol. 289. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  12. Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gentili, G., Stoppato, C., Struppa, D.C.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Berlin (2013)

    Book  Google Scholar 

  14. Kähler, U., Ku, M., Qian, T.: Schwarz problems for poly-Hardy space on the unit ball. Results Math. 71, 801–823 (2017)

    Article  MathSciNet  Google Scholar 

  15. Koselev, A.D.: The kernel function of a Hilbert space of functions that are polyanalytic in the disc. Dokl. Akad. Nauk SSSR 232(2), 277–279 (1977)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Kamal Diki acknowledges the support of the project INdAM Doctoral Programme in Mathematics and/or Applications Cofunded by Marie Sklodowska-Curie Actions, acronym: INdAM-DP-COFUND-2015, grant number: 713485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sabadini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research.

Kamal Diki is a Marie Sklodowska-Curie fellow of the Istituto Nazionale di Alta Matematica.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Diki, K. & Sabadini, I. On Slice Polyanalytic Functions of a Quaternionic Variable. Results Math 74, 17 (2019). https://doi.org/10.1007/s00025-018-0942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0942-2

Mathematics Subject Classification

  • Primary 30G35

Keywords

  • Bergman spaces
  • Fock spaces
  • quaternions
  • slice polyanalytic functions