Abstract
In this paper, we introduce the quaternionic slice polyanalytic functions and we prove some of their properties. Then, we apply the obtained results to begin the study of the quaternionic Fock and Bergman spaces in this new setting. In particular, we give explicit expressions of their reproducing kernels.
This is a preview of subscription content, access via your institution.
Change history
09 April 2021
A Correction to this paper has been published: https://doi.org/10.1007/s00025-021-01364-y
References
Abreu, L.D., Feichtinger, H.G.: Function spaces of polyanalytic functions. In: Vasil’ev, A. (ed.) Harmonic and Complex Analysis and Its Applications. Trends in Mathematics. Birkhäuser, Basel (2014)
Alpay, D.: An Advanced Complex Analysis Problem Book. Birkhäuser, Basel (2015)
Alpay, D., Colombo, F., Sabadini, I.: Slice Hyperholomorphic Schur Analysis, Operator Theory: Advances and Applications, vol. 256. Birkhäuser, Basel (2016)
Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock space in the slice hyperholomorphic setting. In: Bernstein, S. (ed.) Hypercomplex Analysis: New perspectives and Applications. Trends in Mathematics, pp. 43–59. Birkhäuser, Basel (2014)
Altavilla, A.: Some properties for quaternionic slice regular functions on domains without real points. Complex Var. Elliptic Equ. 60(1), 59–77 (2015)
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Advanced Publishing Program, London (1982)
Balk, M.: Polyanalytic Functions. Akademie-Verlag, Berlin (1991)
Colombo, F., Gonzalez-Cervantes, J.O., Sabadini, I.: Further properties of the Bergman spaces of slice regular functions. Adv. Geom. 15(4), 469–484 (2015)
Colombo, F., Gonzalez-Cervantes, J.O., Luna-Elizarraras, M.E., Sabadini, I., Shapiro, M.: On two approaches to the Bergman theory for slice regular functions. Adv. Hypercomplex Anal. 1, 39–54 (2013). (Springer Indam series)
Colombo F., Sabadini I., Struppa D.C.: Entire Slice Regular Functions. Springer Briefs in Mathematics. ISBN 978-3-319-49264-3 (2016)
Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus, Theory and Applications of Slice Hyperholomorphic Functions. Progress in Mathematics, vol. 289. Birkhäuser, Basel (2011)
Gentili, G., Struppa, D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)
Gentili, G., Stoppato, C., Struppa, D.C.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Berlin (2013)
Kähler, U., Ku, M., Qian, T.: Schwarz problems for poly-Hardy space on the unit ball. Results Math. 71, 801–823 (2017)
Koselev, A.D.: The kernel function of a Hilbert space of functions that are polyanalytic in the disc. Dokl. Akad. Nauk SSSR 232(2), 277–279 (1977)
Acknowledgements
Kamal Diki acknowledges the support of the project INdAM Doctoral Programme in Mathematics and/or Applications Cofunded by Marie Sklodowska-Curie Actions, acronym: INdAM-DP-COFUND-2015, grant number: 713485.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research.
Kamal Diki is a Marie Sklodowska-Curie fellow of the Istituto Nazionale di Alta Matematica.
Rights and permissions
About this article
Cite this article
Alpay, D., Diki, K. & Sabadini, I. On Slice Polyanalytic Functions of a Quaternionic Variable. Results Math 74, 17 (2019). https://doi.org/10.1007/s00025-018-0942-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00025-018-0942-2
Mathematics Subject Classification
- Primary 30G35
Keywords
- Bergman spaces
- Fock spaces
- quaternions
- slice polyanalytic functions