Results in Mathematics

, 73:146 | Cite as

Some Dynamic Inequalities Involving Hilbert and Hardy–Hilbert Operators with Kernels

  • Donal O’Regan
  • Haytham M. Rezk
  • Samir H. SakerEmail author


In this paper, we prove some new dynamic inequalities involving Hilbert and Hardy–Hilbert operators with kernels and use them to establish general forms of multiple Hilbert and Hardy–Hilbert type inequalities on time scales.


Hilbert’s inequality Hölder’s inequality time scales 

Mathematics Subject Classification

26D15 34A40 39A12 34N05 


  1. 1.
    Ammi, M.R.S., Torres, D.F.M.: Hölder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova Math. Comput. Sci. Ser. 37(1), 1–11 (2010)zbMATHGoogle Scholar
  2. 2.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  3. 3.
    Bohner, M., Peterson, A. (eds.): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)zbMATHGoogle Scholar
  4. 4.
    Chen, G., Huang, F., Liao, L.: Generalizations of Hölder inequality and some related results on time scales. J. Inequal. Appl. 2014, 207 (2014)CrossRefGoogle Scholar
  5. 5.
    Hardy, G.H.: Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 23, 45–46 (1925)Google Scholar
  6. 6.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1934)zbMATHGoogle Scholar
  7. 7.
    Hardy, G.H., Littlewood, J.E., Polya, G.: The maximum of a certain bilinear form. Proc. Lond. Math. Soc. 25, 265–282 (1926)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hardy, G.H.: Remarks in addition to Dr. Widder’s note on inequalities. J. Lond. Math. Soc. 3, 199–202 (1929)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hardy, G.H.: The constants of certain inequalities. J. Lond. Math. Soc. 8, 114–119 (1933)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krinć, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8, 29–51 (2005)MathSciNetGoogle Scholar
  11. 11.
    Lou, Y.T.: Generalizations of Young inequality and Hölder inequality. J. Nanjing Inst. Posts Telecommun. 14(4), 98–103 (1994). (in Chinese)Google Scholar
  12. 12.
    Rogers Jr., J.W., Sheng, Q.: Notes on the diamond-\(\alpha \) dynamic derivatives on time scales. J. Math. Anal. Appl. 326(1), 228–241 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sheng, Q.: Hybrid approximations via second order combined dynamic derivatives on time scales. Electron. J. Qual. Theory Differ. Equ. 17, 13 (2007). (electronic)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Schur, I.: Bernerkungen sur theorie der beschrankten Bilinearformen mit unendlich vielen veranderlichen. J. Math. 140, 1–28 (1911)zbMATHGoogle Scholar
  15. 15.
    Tuna, A., Kutukcu, S.: Some integral inequalities on time scales. Appl. Math. Mech. Engl. Ed. 29(1), 23–29 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, B., Brnetić, I., Krnić, M., Pečarić, J.: Generalization of Hilbert and Hardy–Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259–272 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Donal O’Regan
    • 1
  • Haytham M. Rezk
    • 2
  • Samir H. Saker
    • 3
    Email author
  1. 1.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland
  2. 2.Department of Mathematics, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt
  3. 3.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations