Skip to main content
Log in

Padé Approximant Related to Ramanujan’s Formula for the Gamma Function

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Ramanujan presented the following approximation to the gamma function:

$$\begin{aligned} \Gamma (x+1)\sim \sqrt{\pi }\left( \frac{x}{e}\right) ^{x} \left( 8x^3+4x^2+x+\frac{1}{30}\right) ^{1/6},\qquad x\rightarrow \infty . \end{aligned}$$

Based on the Padé approximation method, in this paper we develop Ramanujan’s approximation formula to produce a general result. More precisely, we determine the coefficients \(a_j\) and \(b_j\) such that

$$\begin{aligned} \Gamma (x+1)=\sqrt{\pi }\left( \frac{x}{e}\right) ^{x} \left[ 8x^3\left( \frac{1+\sum _{j=1}^{p}a_jx^{-j}}{1+\sum _{j=1}^{q}b_jx^{-j}} \right) +O\left( \frac{1}{x^{p+q-2}}\right) \right] ^{1/6} \end{aligned}$$

as \(x\rightarrow \infty \), where \(p\ge 0\) and \(q\ge 0\) are any given integers (an empty sum is understood to be zero). In particular, setting \((p,q)=(3,0)\) yields Ramanujan’s approximation to the gamma function. Based on the obtained result, we establish new bounds for the gamma function, improving the double inequality presented by Ramanujan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)

    Article  MathSciNet  Google Scholar 

  2. Alzer, H.: On Ramanujan’s double inequality for the gamma function. Bull. Lond. Math. Soc. 35, 601–607 (2003)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook. Part IV. Springer, New York (2013)

    Book  Google Scholar 

  4. Bercu, G.: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, Article 99 (2016). http://www.doc88.com/p-0037658479714.html

  5. Berndt, B.C., Choi, Y.-S., Kang, S.-Y.: The problems submitted by Ramanujan to the Journal of the Indian Mathematical Society. Contemp. Math. 236, 15–56 (1999)

    Article  MathSciNet  Google Scholar 

  6. Brezinski, C., Redivo-Zaglia, M.: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69–77 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chen, C.-P.: Unified treatment of several asymptotic formulas for the gamma function. Numer. Algorithms 64, 311–319 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, C.-P.: Inequalities and asymptotic expansions associated with the Ramanujan and Nemes formulas for the gamma function. Appl. Math. Comput. 261, 337–350 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Chen, C.-P.: Monotonicity properties, inequalities and asymptotic expansions associated with the gamma function. Appl. Math. Comput. 283, 385–396 (2016)

    MathSciNet  Google Scholar 

  10. Chen, C.-P.: A sharp version of Ramanujan’s inequality for the factorial function. Ramanujan J. 39, 149–154 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chen, C.-P., Lin, L.: Remarks on asymptotic expansions for the gamma function. Appl. Math. Lett. 25, 2322–2326 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hirschhorn, M.D.: A new version of Stirling’s formula. Math. Gaz. 90, 286–291 (2006)

    Article  Google Scholar 

  13. Hirschhorn, M.D., Villarino, M.B.: A refinement of Ramanujan’s factorial approximation. Ramanujan J. 34, 73–81 (2014)

    Article  MathSciNet  Google Scholar 

  14. Karatsuba, E.A.: On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comput. Appl. Math. 135, 225–240 (2001)

    Article  MathSciNet  Google Scholar 

  15. Koumandos, S.: Remarks on some completely monotonic functions. J. Math. Anal. Appl. 324, 1458–1461 (2006)

    Article  MathSciNet  Google Scholar 

  16. Koumandos, S., Pedersen, H.L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal. Appl. 355, 33–40 (2009)

    Article  MathSciNet  Google Scholar 

  17. Mortici, C.: Improved asymptotic formulas for the gamma function. Comput. Math. Appl. 61, 3364–3369 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mortici, C.: Ramanujan’s estimate for the gamma function via monotonicity arguments. Ramanujan J. 25, 149–154 (2011)

    Article  MathSciNet  Google Scholar 

  19. Mortici, C.: On Ramanujan’s large argument formula for the gamma function. Ramanujan J. 26, 185–192 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. With an Introduction by George E. Andrews. Springer, Berlin (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CP. Padé Approximant Related to Ramanujan’s Formula for the Gamma Function. Results Math 73, 107 (2018). https://doi.org/10.1007/s00025-018-0866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0866-x

Keywords

Mathematics Subject Classification

Navigation