Skip to main content
Log in

Generalized Bessel Multipliers in Hilbert Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The notation of generalized Bessel multipliers is obtained by a bounded operator on \(\ell ^2\) which is inserted between the analysis and synthesis operators. We show that various properties of generalized multipliers are closely related to their parameters, in particular, it will be shown that the membership of generalized Bessel multiplier in the certain operator classes requires that its symbol belongs in the same classes, in a special sense. Also, we give some examples to illustrate our results. As we shall see, generalized multipliers associated with Riesz bases are well-behaved, more precisely in this case multipliers can be easily composed and inverted. Special attention is devoted to the study of invertible generalized multipliers. Sufficient and/or necessary conditions for invertibility are determined. Finally, the behavior of these operators under perturbations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoine, J.-P., Balazs, P.: Frames and semi-frames. J. Phys. A Math. Theor. 44(20), 205201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, J.-P., Speckbacher, M., Trapani, C.: Reproducing pairs of measurable functions. Acta. Appl. Math. 150, 81–101 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakić, D., Guljas̆, B.: A note on compact operators and operator matrices. Math. Commun. 4(2), 159–165 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Balazs, P.: Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl. 325(2), 581–588 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Balazs, P.: Hilbert–Schmidt operators and frames classification, approximation by multipliers and algorithms. Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 315–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balazs, P.: Matrix representation of operators using frames. Sampl. Theory Signal Image Process. (STSIP) 7(1), 39–54 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Balazs, P.: Matrix representation of bounded linear operators by Bessel sequences, frames and Riesz sequence. In: SAMPTA’09, Marseille, pp. 18–22 (2009)

  9. Balazs, P., Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A Math. Theor. 45, 244023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balazs, P., Gröchenig, K.: A guide to localized frames and applications to Galerkin-like representations of operators. In: Frames and Other Bases in Abstract and Function Spaces, pp. 47–79. Birkhäuser, Cham (2017)

  11. Balazs, P., Rieckh, G.: Redundant representation of operators. arXiv:1612.06130

  12. Benedetto, J.J.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5(4), 389–427 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bölcskei, H., Hlawatsch, F., Feichtinger, H.G.: Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46(12), 3256–3268 (1998)

    Article  Google Scholar 

  14. Casazza, P.G., Han, D., Larson, D.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christensen, O.: Frames and pseudo-inverses. J. Math. Anal. Appl. 195(2), 401–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhauser, Basel (2016)

    Book  MATH  Google Scholar 

  19. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96. Springer, New York (1990)

    Google Scholar 

  20. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feichtinger, H.G., Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  23. Gröchenig, K.: Time-frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22, 703–724 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khosravi, A., Mirzaee Azandaryani, M.: Bessel multipliers in Hilbert \(C^{*}\) modules. Banach J. Math. Anal. 9, 153–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murphy, G.J.: C*-Algebras and Operator Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  27. Pietsch, A.: Operator Ideals. North-Holland Publishing Company, Amsterdam (1980)

    MATH  Google Scholar 

  28. Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1960)

    Book  MATH  Google Scholar 

  29. Shen, L., et al.: Image denoising using a tight frame. IEEE Transactions Image Process. 15(5), 1254–1263 (2006)

    Article  Google Scholar 

  30. Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. J. Phys. A Math. Theor. 48, 395201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stoeva, D., Balazs, P.: Invertibility of multipliers. Appl. Comput. Harmon. Anal. 33, 292–299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  34. Zhuo, K.: Operator Theory in Function Spaces. Marcel Dekker Inc, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Abbaspour Tabadkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaspour Tabadkan, G., Hosseinnezhad, H. & Rahimi, A. Generalized Bessel Multipliers in Hilbert Spaces. Results Math 73, 85 (2018). https://doi.org/10.1007/s00025-018-0841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0841-6

Mathematics Subject Classification

Keywords

Navigation