Skip to main content
Log in

Inverse Source Problem for Heat Equation with Nonlocal Wentzell Boundary Condition

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The inverse source problem for one-dimensional heat equation is investigated with nonlocal Wentzell–Neumann boundary and integral overdetermination conditions. The generalized Fourier method is used to show the existence, uniqueness and stability of the classical solution under some regularity, consistency and orthogonality conditions on the data. The considered inverse problem gives an idea of how total energy might be externally controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wentzell, A.D.: On boundary conditions for multidimensional diffusion processes. Theory Prob. Appl. 4, 164–177 (1959)

    Article  Google Scholar 

  2. Luo, Y., Trudinger, N.S.: Linear second order elliptic equations with Venttsel boundary conditions. Proc. R. Soc. Edinb. 118A, 193–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Campiti, M., Metafune, G.: Ventcel’s boundary conditions and analytic semigroups. Arch. Math. 70(5), 377–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Co-semigroups generated by second order differential operators with general Wentzell boundary conditions. Proc. Am. Math. Soc. 128, 1981–1989 (2000)

    Article  MATH  Google Scholar 

  5. Vogt, H., Voigt, J.: Wentzell boundary conditions in the context of Dirichlet forms. Adv. Differ. Equ. 8(7), 821–842 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Arendt, W., Metafune, G., Pallara, D., Romanelli, S.: The Laplacian with Wentzell–Robin boundary conditions on spaces of continuous functions. Semigroup Forum 67(2), 247–261 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with nonlinear general Wentzell boundary condition. Adv. Differ. Equ. 11(5), 481–510 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Coclite, G., Goldstein, G., Goldstein, J.: Stability of parabolic problems with nonlinear Wentzell boundary conditions. J. Differ. Equ. 246, 2434–2447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with generalized Wentzell boundary condition. J. Evol. Equ. 2, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vázquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive–diffusive type. J. Differ. Equ. 250(4), 2143–2161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. R. Soc. Edinb. 113A, 43–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sauer, N.: Dynamical Processes Associated with Dynamic Boundary Conditions for Partial Differential Equations Differential Equations and Applications, pp. 374–378. Ohio University Press, Athens (1989)

    Google Scholar 

  13. Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18(7–8), 1309–1364 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Igbida, N., Kirane, M.: A degenerate diffusion problem with dynamical boundary conditions diffusion problem with dynamical boundary conditions. Mathe. Annal. 323(2), 377–396 (2002)

    Article  MATH  Google Scholar 

  15. Vrabel, V., Slodicka, M.: Nonlinear parabolic equation with a dynamical boundary condition of diffusive type. Appl. Math. Comput. 222, 372–380 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Slodicka, M.: A parabolic inverse source problem with a dynamical boundary condition. Appl. Math. Comput. 256, 529–539 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Kerimov, N.B., Ismailov, M.I.: Direct and inverse problems for the heat equation with a dynamic-type boundary condition. IMA J. Appl. Math. 80(5), 1519–1533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hazanee, A., Lesnic, D., Ismailov, M.I., Kerimov, N.B.: An inverse time-dependent source problem for the heat equation with a non-classical buondary conditions. Appl. Math. Model. 39, 6258–6272 (2015)

    Article  MathSciNet  Google Scholar 

  19. Cannon, J.R., Lin, Y., Wang, S.: Determination of a control parameter in a parabolic partial differential equation. J. Aust. Math. Soc. Ser. B 33, 149–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cannon, J.R., Lin, Y., van der Hoek, J.: A quasi-linear parabolic equation with nonlocal boundary condition. Rend. Math. Appl. (7) 10(2), 239–264 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Ivanchov, M.I.: On the determination of unknown source in the heat equation with nonlocal boundary conditions. Ukr. Math. J. 47, 1647–1652 (1995)

    Article  MathSciNet  Google Scholar 

  22. Ivanchov, M.I.: The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions. J. Math. Sci. 88(3), 432–436 (1998)

    Article  MathSciNet  Google Scholar 

  23. Ismailov, M.I., Kanca, F., Lesnic, D.: Determination of a time-dependent heatsource under nonlocal boundary and integral overdetermination conditions. Appl. Math. Comput. 218(8), 4138–4146 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Hazanee, A., Ismailov, M.I., Lesnic, D., Kerimov, N.B.: An inverse time-dependent source problem for the heat equation. Appl. Numer. Math. 69, 13–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cavalcanti, M.M., Correa, W.J., Lasiecka, I., Lefler, C.: Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Indiana Univ. Math. J. 65(5), 1445–1502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guidetti, D.: Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Commun. Pure Appl. Anal. 15(4), 1401–1417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gvelesiani, S., Lippoth, F., Walker, C.: On global solutions for quasilinear one-dimensional parabolic problems with dynamical boundary conditions. J. Differ. Equ. 259(12), 7060–7085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Warma, M.: Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains. Commun. Pure Appl. Anal. 12(5), 1881–1905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Warma, M.: Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete Contin. Dyn. Syst. 33(11–12), 5493–5506 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marchenkov, D.B.: The basis property in the space Lp(0,1) of a system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition. Differ. Equ. 42(6), 847–849 (2006)

    Article  MathSciNet  Google Scholar 

  31. Marchenkov, D.B.: On the convergence of spectral expansions of functions for a problem with a spectral parameter in the boundary condition. Differ. Equ. 41(10), 1496–1500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roussy, G., Bennani, A., Thiebaut, J.: Temperature runaway of microwave irradiated materials. J. Appl. Phys. 62, 1167 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansur I. Ismailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, M.I. Inverse Source Problem for Heat Equation with Nonlocal Wentzell Boundary Condition. Results Math 73, 68 (2018). https://doi.org/10.1007/s00025-018-0829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0829-2

Mathematics Subject Classification

Keywords

Navigation