Skip to main content
Log in

Integral Representation for Bessel’s Functions of the First Kind and Neumann Series

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A Fourier-type integral representation for Bessel’s functions of the first kind and complex order is obtained by using the Gegenbauer extension of Poisson’s integral representation for the Bessel function along with a suitable trigonometric integral representation of Gegenbauer’s polynomials. By using this representation, expansions in series of Bessel’s functions of various functions which are related to the incomplete gamma function can be obtained in a unified way. Neumann series are then considered and a new closed-form integral representation for this class of series is given. The density function of this representation is the generating function of the sequence of coefficients of the Neumann series on the unit circle. Examples of new closed-form integral representations of special functions are thus presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrest, M.M., Maksimov, M.S.: Theory of Incomplete Cylindrical Functions and their Applications. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  2. Apelblat, A.: Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42(5), 708–714 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baricz, Á., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1965)

    Google Scholar 

  5. Bray, W.O., Stanojević, V.B.: On the integrability of complex trigonometric series. Proc. Am. Math. Soc. 93(1), 51–58 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bros, J., Viano, G.A.: Connection between the harmonic analysis on the sphere and the harmonic analysis on the one-sheeted hyperboloid: an analytic continuation viewpoint III. Forum Math. 9, 165–191 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Brualla, L., Martin, P.: Analytic approximations to Kelvin functions with applications to electromagnetics. J. Phys. A 34(43), 9153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Micheli, E., Viano, G.A.: Holomorphic extension associated with Fourier–Legendre expansions. J. Geom. Anal. 12(3), 355–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Micheli, E., Viano, G.A.: The expansion in Gegenbauer polynomials: a simple method for the fast computation of the Gegenbauer coefficients. J. Comput. Phys. 239, 112–122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dras̆c̆ić, B., Pogány, T.K.: On integral representation of Bessel function of the first kind. J. Math. Anal. Appl. 308(2), 775–780 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flesch, R.J., Trullinger, S.E.: Green’s functions for nonlinear Klein–Gordon kink perturbation theory. J. Math. Phys. 28(7), 1619–1631 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gautschi, W.: The incomplete gamma functions since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics. Atti dei Convegni Lincei 147, pp. 203–237. Accademia Nazionale dei Lincei, Roma (1998)

  13. Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jardim, R.F., Laks, B.: Kelvin functions for determination of magnetic susceptibility in nonmagnetic metals. J. Appl. Phys. 65(12), 4505 (1989)

    Article  Google Scholar 

  15. Korenev, B.G.: Bessel Functions and their Applications. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  16. Kravchenko, V.V., Torba, S.M., Castillo-Pérez, R.: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations. Appl. Anal. 97(5), 677–704 (2018)

    Article  MathSciNet  Google Scholar 

  17. Luke, Y.L.: Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13, 261–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luke, Y.L.: The Special Functions and their Approximations, vol. 2. Academic Press, New York (1969)

    MATH  Google Scholar 

  19. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.15. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds)

  20. Paris, R.B.: High-precision evaluation of the Bessel functions via Hadamard series. J. Comput. Appl. Math. 224(1), 84–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pogány, T.K., Süli, E.: Integral representation of Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rice, S.O.: Mathematical analysis of random noise. III. Bell Syst. Tech. J. 24(1), 46–156 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  24. Tricomi, F.G.: Asymptotische Eigenschaften der unvollständigen Gammafunktion. Math. Z. 53(2), 136–148 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tricomi, F.G.: Sulla funzione gamma incompleta. Ann. Math. Pura Appl. 31(1), 263–279 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veling, E.J.M.: The generalized incomplete gamma function as sum over modified Bessel functions of the first kind. J. Comput. Appl. Math. 235(14), 4107–4116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  28. Wilkins Jr., J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64(2), 359–385 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico De Micheli.

Additional information

This work has been partially funded by C.N.R. - Italy, Project MD.P01.004.001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Micheli, E. Integral Representation for Bessel’s Functions of the First Kind and Neumann Series. Results Math 73, 61 (2018). https://doi.org/10.1007/s00025-018-0826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0826-5

Keywords

Mathematics Subject Classification

Navigation