Skip to main content
Log in

The Topological Structure of Conformally Flat Riemannian Manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we will prove vanishing and finiteness theorems for \(L^2\)-harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. From these theorems and the work of Li–Tam, we can obtain some one-end and finite ends results for the locally conformally flat Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carron, G.: \(L^2\) harmonic forms on noncompact Riemannian manifolds. Proc. Centre Math. Appl. Austral. Nat. Univ. 40, 49–59 (2002)

    MATH  Google Scholar 

  2. Carron, C., Herlich, M.: The Huber theorem for non-compact conformally flat manifolds. Comment Math. Helv. 77, 192–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavalcante, M.P., Mirandola, H., Vitório, F.: \(L^2\) harmonic 1-forms on submanifolds with finite total curvature. J. Geom. Anal. 24, 205–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, B.L., Zhu, X.P.: A gap theorem for complete non-compact manifolds with nonnegative Ricci curvature. Commun. Anal. Geom. 10(1), 217–239 (2002)

    Article  MATH  Google Scholar 

  5. Cheng, Q.M.: Compact locally conformally flat Riemannian manifolds. Bull. Lond. Math. Soc. 33, 459–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, H.P., Xu, H.W.: Total curvauture and \(L^2\) harmonic \(1\)-forms on complete submanifolds in space forms. Geom. Dedicata. 144, 129–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldberg, S.I.: An application of Yau’s maximum principle to conformally flat spaces. Proc. Am. Math. Soc. 79, 268–270 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Goldberg, S.I., Okumura, M.: Conformally flat manifolds and a pinching problem on the Ricci tensor. Proc. Am. Math. Soc. 58, 234–236 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, Y.B.: The topological structure of complete noncompact submanifolds in spheres. J. Math. Anal. Appl. 457, 991–1006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, Y.B., Zhang, Q.Y., Liang, M.H.: \(L^p\) \(p\)-harmonic 1-forms on locally conformally flat Riemannian manifolds. Kodai Math. J. 40, 518–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, P.: Curvature and function theory on Riemannian manifolds. Honor of Atiyah, Bott, Hirzebruch and Singer. Survey in Differential Geometry, vol. VII, pp. 71–111. International Press, Cambridge (2000)

  12. Li, P.: On the Sobolev constant and the \(p\)-spectrum of a compact Riemannian manifold. Ann. Sci. Éc. Norm. Sup. 13(4), 451–468 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, P., Tam, L.F.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35, 359–383 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, P., Wang, J.P.: Minimal hypersurfaces with finite index. Math. Res. Lett. 9, 95–103 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, H.Z.: \(L^p\)-vanishing results for conformally flat manifolds and submanifolds. J. Geom. Phys. 73, 157–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, H.Z.: On the structure of conformally flat Riemannian manifolds. Nonlinear Anal. 123–124, 115–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, H.Z.: \(L^2\) harmonic forms on submanifolds in a Hadamard manifold. Nonlinear Anal. 125, 310–322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, P.H., Wang, X.J.: The geometric properties of harmonic function on 2-dimensional Riemannian manifolds. Nonlinear Anal. 103, 2–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, H.: The Bochner technique in differential geometry. In: Mathematical Reports, Vol. 3, pt 2. Harwood Academic Publishing, London (1987)

  20. Xu, H.W., Zhao, E.T.: \(L^p\) Ricci curvature pinching theorems for conformally flat Riemannian manifolds. Pac. J. Math. 245(2), 381–396 (2010)

    Article  MATH  Google Scholar 

  21. Zhu, P., Fang, S.W.: A gap theorem on submanifolds with finite total curvature in spheres. J. Math. Anal. Appl. 413, 195–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, P., Fang, S.W.: Finiteness of non-parabolic ends on submanifolds in shpere. Ann. Glob. Anal. Geom. 46, 187–196 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y. The Topological Structure of Conformally Flat Riemannian Manifolds. Results Math 73, 54 (2018). https://doi.org/10.1007/s00025-018-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0812-y

Mathematics Subject Classification

Keywords

Navigation